Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junzheng Yang is active.

Publication


Featured researches published by Junzheng Yang.


Transplantation | 2008

Multifunctional Magnetic Nanocarriers for Image-Tagged siRNA Delivery to Intact Pancreatic Islets

Zdravka Medarova; Mohanraja Kumar; Shu Wing Ng; Junzheng Yang; Natasha S. Barteneva; Natalia V. Evgenov; Victoria Petkova; Anna Moore

Background. With the ultimate hope of finding a cure for diabetes, researches are looking into altering the genetic profile of the beta cell as a way to manage metabolic dysregulation. One of the most powerful new approaches for the directed regulation of gene expression uses the phenomenon of RNA interference. Methods. Here, we establish the feasibility of a novel technology centered around multifunctional magnetic nanocarriers, which concurrently deliver siRNA to intact pancreatic islets and can be detected by magnetic resonance and optical imaging. Results. In the proof-of-principle studies described here, we demonstrate that, after in vitro incubation, magnetic nanoparticles carrying siRNA designed to target the model gene for enhanced green fluorescent protein are efficiently taken up by murine pancreatic islets, derived from egfp transgenic animals. This uptake can be visualized by magnetic resonance imaging and near-infrared fluorescence optical imaging and results in suppression of the target gene. Conclusions. These results illustrate the value of our approach in overcoming the challenges associated with genetic modification of intact pancreatic islets in a clinically acceptable manner. Furthermore, an added advantage of our technology derives from the combined capability of our magnetic nanoparticles for siRNA delivery and magnetic labeling of pancreatic islets.


Embo Molecular Medicine | 2012

Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells

Noah Rodriguez; Junzheng Yang; Kathleen Hasselblatt; Shubai Liu; Yilan Zhou; Jose A. Rauh-Hain; Shu-Kay Ng; Pui-Wah Choi; Wing-Ping Fong; Nathalie Y. R. Agar; William R. Welch; Ross S. Berkowitz; Shu-Wing Ng

Epithelial ovarian cancer is the leading cause of death among gynaecologic cancers in Western countries. Our studies have shown that casein kinase I‐epsilon (CKIε), a Wnt pathway protein, is significantly overexpressed in ovarian cancer tissues and is associated with poor survival. Ectopic expression of CKIε in normal human ovarian surface epithelial cells and inhibition of CKIε in ovarian cancer cells and in xenografts demonstrated the importance of CKIε in regulating cell proliferation and migration. Interestingly, CKIε function did not seem to involve β‐catenin activity. Instead, CKIε was found to interact with several mitochondrial proteins including adenine nucleotide translocase 2 (ANT2). Inhibition of CKIε in ovarian cancer cells resulted in suppression of ANT2, downregulation of cellular ATP and the resulting cancer cells were more susceptible to chemotherapy. Our studies indicate that, in the context of ovarian cancer, the interaction between CKIε and ANT2 mediates pathogenic signalling that is distinct from the canonical Wnt/β‐catenin pathway and is essential for cell proliferation and is clinically associated with poor survival.


BMC Cancer | 2012

Characterization of aldehyde dehydrogenase isozymes in ovarian cancer tissues and sphere cultures

Yu-Ting Saw; Junzheng Yang; Shu-Kay Ng; Shubai Liu; Surendra Singh; Margit Singh; William R. Welch; Hiroshi Tsuda; Wing-Ping Fong; David Thompson; Vasilis Vasiliou; Ross S. Berkowitz; Shu-Wing Ng

BackgroundAldehyde dehydrogenases belong to a superfamily of detoxifying enzymes that protect cells from carcinogenic aldehydes. Of the superfamily, ALDH1A1 has gained most attention because current studies have shown that its expression is associated with human cancer stem cells. However, ALDH1A1 is only one of the 19 human ALDH subfamilies currently known. The purpose of the present study was to determine if the expression and activities of other major ALDH isozymes are associated with human ovarian cancer and ovarian cancer sphere cultures.MethodsImmunohistochemistry was used to delineate ALDH isozyme localization in clinical ovarian tissues. Western Blot analyses were performed on lysates prepared from cancer cell lines and ovarian cancer spheres to confirm the immunohistochemistry findings. Quantitative reverse transcription-polymerase chain reactions were used to measure the mRNA expression levels. The Aldefluor® assay was used to measure ALDH activity in cancer cells from the four tumor subtypes.ResultsImmunohistochemical staining showed significant overexpression of ALDH1A3, ALDH3A2, and ALDH7A1 isozymes in ovarian tumors relative to normal ovarian tissues. The expression and activity of ALDH1A1 is tumor type-dependent, as seen from immunohistochemisty, Western blot analysis, and the Aldefluor® assay. The expression was elevated in the mucinous and endometrioid ovarian epithelial tumors than in serous and clear cell tumors. In some serous and most clear cell tumors, ALDH1A1 expression was found in the stromal fibroblasts. RNA expression of all studied ALDH isozymes also showed higher expression in endometrioid and mucinous tumors than in the serous and clear cell subtypes. The expression of ALDH enzymes showed tumor type-dependent induction in ovarian cancer cells growing as sphere suspensions in serum-free medium.ConclusionsThe results of our study indicate that ALDH enzyme expression and activity may be associated with specific cell types in ovarian tumor tissues and vary according to cell states. Elucidating the function of the ALDH isozymes in lineage differentiation and pathogenesis may have significant implications for ovarian cancer pathophysiology.


Bioconjugate Chemistry | 2010

siRNA Delivery to CNS Cells using a Membrane Translocation Peptide

Marytheresa A. Ifediba; Zdravka Medarova; Shu-Wing Ng; Junzheng Yang; Anna Moore

RNA interference (RNAi) is a sequence-specific gene silencing technique that has been applied to multiple pathological conditions. In this report, we describe the generation and in vitro characterization of an RNAi-based fluorescent probe for use as a therapeutic in the setting of ischemic stroke. Probe delivery to bEnd.3 brain endothelial cells and primary cortical neurons and astrocytes was promoted by incorporating small interfering RNA (siRNA) into complexes with fluorescently labeled myristoylated polyarginine peptides. The resulting probe was partially protected from serum nuclease degradation and was efficiently internalized by cells as confirmed by flow cytometry and confocal microscopy. In addition, application of the siRNA probe directed against c-Src, a protein implicated in stroke pathology, led to statistically significant reduction of endogenous c-src mRNA levels in all cell types tested. Results demonstrate the proof-of-principle that functionalized peptide--siRNA probes can be used as potential tools for dual imaging and therapeutic applications.


Oncogene | 2013

C-terminal binding protein-2 regulates response of epithelial ovarian cancer cells to histone deacetylase inhibitors

L. M. Barroilhet; Junzheng Yang; Kathleen Hasselblatt; Rm Paranal; Shu-Kay Ng; Ja Rauh-Hain; William R. Welch; James E. Bradner; Ross S. Berkowitz; S. W. Ng

Ovarian cancer survival rates have stagnated in the last 20 years despite the development of novel chemotherapeutic agents. Modulators of gene expression, such as histone deacetylase (HDAC) inhibitors, are among the new agents being used in clinical trials. Predictors of sensitivity to chemotherapy have remained elusive. In this study, we show that the expression of the transcriptional corepressor C-terminal binding protein-2 (CtBP2) is elevated in human ovarian tumors. Downregulation of CtBP2 expression in ovarian cancer cell lines using short-hairpin RNA strategy suppressed the growth rate and migration of the resultant cancer cells. The knockdown cell lines also showed upregulation of HDAC activity and increased sensitivity to selected HDAC inhibitors. Conversely, forced expression of wild-type CtBP2 in the knockdown cell lines reversed HDAC activity and partially rescued cellular sensitivity to the HDAC inhibitors. We propose that CtBP2 is an ovarian cancer oncogene that regulates gene expression program by modulating HDAC activity. CtBP2 expression may be a surrogate indicator of cellular sensitivity to HDAC inhibitors.


Oncotarget | 2016

Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells.

Pui-Wah Choi; Junzheng Yang; Shu-Kay Ng; Colleen M. Feltmate; Michael G. Muto; Kathleen Hasselblatt; Kyle Lafferty-Whyte; Lellean JeBailey; Laura E. MacConaill; William R. Welch; Wing-Ping Fong; Ross S. Berkowitz; Shu-Wing Ng

Increased inclusion cyst formation in the ovary is associated with ovarian cancer development. We employed in vitro three-dimensional (3D) organotypic models formed by normal human ovarian surface epithelial (OSE) cells and ovarian cancer cells to study the morphologies of normal and cancerous ovarian cortical inclusion cysts and the molecular changes during their transitions into stromal microenvironment. When compared with normal cysts that expressed tenascin, the cancerous cysts expressed high levels of laminin V and demonstrated polarized structures in Matrigel; and the cancer cells migrated collectively when the cyst structures were positioned in a stromal-like collagen I matrix. The molecular markers identified in the in vitro 3D models were verified in clinical samples. Network analysis of gene expression of the 3D structures indicates concurrent downregulation of transforming growth factor beta pathway genes and high levels of E-cadherin and microRNA200 (miR200) expression in the cancerous cysts and the migrating cancer cells. Transient silencing of E-cadherin expression in ovarian cancer cells disrupted cyst structures and inhibited collective cell migration. Taken together, our studies employing 3D models have shown that E-cadherin is crucial for ovarian inclusion cyst formation and collective cancer cell migration.


Oncogene | 2017

Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis

Shujun Liu; N R Tackmann; Junzheng Yang; Yijian Zhang

Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the ribosomal protein (RP)-murine double minute 2 (MDM2)-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2C305F mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apcmin/+ mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2C305F mutation. However, notable p53 stabilization and activation were observed only in Apcmin/+;Mdm2+/+ but not Apcmin/+;Mdm2C305F/C305F colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.


Oncotarget | 2016

Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells

Yanli Zhang; Jamie Sui-Lam Kwok; Pui-Wah Choi; Minghua Liu; Junzheng Yang; Margit Singh; Shu-Kay Ng; William R. Welch; Michael G. Muto; Stephen Kw Tsui; Stephen P. Sugrue; Ross S. Berkowitz; Shu-Wing Ng

Unlike many other human solid tumors, ovarian tumors express many epithelial markers at a high level for cell growth and local invasion. The phosphoprotein Pinin plays a key role in epithelial cell identity. We showed that clinical ovarian tumors and ovarian cancer cell lines express a high level of Pinin when compared with normal ovarian tissues and immortalized normal ovarian surface epithelial cell lines. Pinin co-localized and physically interacted with transcriptional corepressor C-terminal binding proteins, CtBP1 and CtBP2, in the nuclei of cancer cells. Knockdown of Pinin in ovarian cancer cells resulted in specific reduction of CtBP1 protein expression, cell adhesion, anchorage-independent growth, and increased drug sensitivity. Whole transcriptomic comparison of next-generation RNA sequencing data between control ovarian cancer cell lines and cancer cell lines with respective knockdown of Pinin, CtBP1, and CtBP2 expression also showed reduced expression of CtBP1 mRNA in the Pinin knockdown cell lines. The Pinin knockdown cell lines shared significant overlap of differentially expressed genes and RNA splicing aberrations with CtBP1 knockdown and in a lesser degree with CtBP2 knockdown cancer cells. Hence, Pinin and CtBP are oncotargets that closely interact with each other to regulate transcription and pre-mRNA alternative splicing and promote cell adhesion and other epithelial characteristics of ovarian cancer cells.


BMC Cancer | 2017

Characterization of MicroRNA-200 pathway in ovarian cancer and serous intraepithelial carcinoma of fallopian tube

Junzheng Yang; Yilan Zhou; Shu-Kay Ng; Kuan-Chun Huang; Xiaoyan Ni; Pui-Wah Choi; Kathleen Hasselblatt; Michael G. Muto; William R. Welch; Ross S. Berkowitz; Shu-Wing Ng

BackgroundOvarian cancer is the leading cause of death among gynecologic diseases in Western countries. We have previously identified a miR-200-E-cadherin axis that plays an important role in ovarian inclusion cyst formation and tumor invasion. The purpose of this study was to determine if the miR-200 pathway is involved in the early stages of ovarian cancer pathogenesis by studying the expression levels of the pathway components in a panel of clinical ovarian tissues, and fallopian tube tissues harboring serous tubal intraepithelial carcinomas (STICs), a suggested precursor lesion for high-grade serous tumors.MethodsRNA prepared from ovarian and fallopian tube epithelial and stromal fibroblasts was subjected to quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) to determine the expression of miR-200 families, target and effector genes and analyzed for clinical association. The effects of exogenous miR-200 on marker expression in normal cells were determined by qRT-PCR and fluorescence imaging after transfection of miR-200 precursors.ResultsOvarian epithelial tumor cells showed concurrent up-regulation of miR-200, down-regulation of the four target genes (ZEB1, ZEB2, TGFβ1 and TGFβ2), and up-regulation of effector genes that were negatively regulated by the target genes. STIC tumor cells showed a similar trend of expression patterns, although the effects did not reach significance because of small sample sizes. Transfection of synthetic miR-200 precursors into normal ovarian surface epithelial (OSE) and fallopian tube epithelial (FTE) cells confirmed reduced expression of the target genes and elevated levels of the effector genes CDH1, CRB3 and EpCAM in both normal OSE and FTE cells. However, only FTE cells had a specific induction of CA125 after miR-200 precursor transfection.ConclusionsThe activation of the miR-200 pathway may be an early event that renders the OSE and FTE cells more susceptible to oncogenic mutations and histologic differentiation. As high-grade serous ovarian carcinomas (HGSOC) usually express high levels of CA125, the induction of CA125 expression in FTE cells by miR-200 precursor transfection is consistent with the notion that HGSOC has an origin in the distal fallopian tube.


European Journal of Cancer | 2016

Cyclin A1 expression and paclitaxel resistance in human ovarian cancer cells

Kuan-Chun Huang; Junzheng Yang; Michelle Ng; Shu-Kay Ng; William R. Welch; Michael G. Muto; Ross S. Berkowitz; Shu-Wing Ng

BACKGROUND The development of intrinsic and acquired resistance to antineoplastic agents is a major obstacle to successful chemotherapy in ovarian cancers. Identification and characterisation of chemoresponse-associated biomarkers are of paramount importance for novel therapeutic development. METHODS Global RNA expression profiles were obtained by high-throughput microarray analysis. Cell cycle, proliferation rate, and paclitaxel sensitivity of ovarian cancer cells harbouring cyclin A1-inducible expression construct were compared with and without tetracycline induction, as well as when the cyclin A1 expression was suppressed by short inhibiting RNA (siRNA). Cellular senescence was evaluated by β-galactosidase activity staining. RESULTS Global RNA expression profiling and subsequent correlation studies of gene expression level and drug response has identified that elevated expression of cyclin A1 (CCNA1) was significantly associated with cellular resistance to paclitaxel, doxorubicin and 5-fluorouracil. The role of cyclin A1 in paclitaxel resistance was confirmed in ovarian cancer cells that harbour an inducible cyclin A1 expression construct, which showed reduced paclitaxel-mediated growth inhibition and apoptosis when cyclin A1 expression was induced, whereas downregulation of cyclin A1 expression in the same cell lines using cyclin A1-specific siRNAs sensitised the cells to paclitaxel toxicity. However, ovarian cancer cells with ectopic expression of cyclin A1 demonstrated slowdown of proliferation and senescence-associated β-galactosidase activity. CONCLUSIONS Our profiling and correlation studies have identified cyclin A1 as one chemoresistance-associated biomarker in ovarian cancer. The results of the characterisation studies suggest that cyclin A1 functions as an oncogene that controls proliferative and survival activities in tumourigenesis and chemoresistance of ovarian cancer.

Collaboration


Dive into the Junzheng Yang's collaboration.

Top Co-Authors

Avatar

Ross S. Berkowitz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shu-Wing Ng

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

William R. Welch

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen Hasselblatt

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pui-Wah Choi

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Michael G. Muto

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Shubai Liu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christopher P. Crum

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Taymaa May

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge