Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junzi Wu is active.

Publication


Featured researches published by Junzi Wu.


RSC Advances | 2016

Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials

Heyu Li; Maochun Wang; Gareth R. Williams; Junzi Wu; Xiaozhu Sun; Yao Lv; Limin Zhu

Vitamin A palmitate and vitamin E TPGS, common derivatives of the unstable vitamins A and E, were successfully incorporated into biodegradable gelatin nanofibers via electrospinning. Electron microscopy showed that smooth cylindrical fibers were produced, albeit with a small amount of beading visible for the vitamin-loaded systems. The diameters of the fibers decrease with the addition of vitamins. The presence of the vitamins in the fibers was confirmed by IR spectroscopy, and X-ray diffraction showed them to exist in the amorphous physical form post-electrospinning. The addition of vitamins did not affect the hydrophilic properties of the gelatin nanofibers. Fibers containing vitamin A or E alone showed a sustained release profile over more than 60 hours, and those incorporating both vitamins showed similar release characteristics, except that the extent of release for vitamin A was increased. Antibacterial tests demonstrated that materials loaded with vitamin E were effective in inhibiting the growth of E. coli and S. aureus. The fibers could promote the proliferation of fibroblasts during the early stages of culture, and enhance the expression of collagen-specific genes. In vivo tests determined that the fibers loaded with vitamins have better wound healing performance than a commercially used antiseptic gauze and casting films.


International Journal of Pharmaceutics | 2017

Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials

Heyu Li; Gareth R. Williams; Junzi Wu; Yao Lv; Xiaozhu Sun; Huanling Wu; Limin Zhu

To obtain wound dressings which could be removed easily without secondary injuries, we prepared thermoresponsive electrospun fiber mats containing poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA). Blend fibers of PDEGMA and poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL) were fabricated via electrospinning, and analogous fibers containing the antibiotic ciprofloxacin (CIF) were also prepared. Smooth cylindrical fibers were obtained, albeit with a small amount of beading visible for the ciprofloxacin-loaded fibers. X-ray diffraction showed the drug to exist in the amorphous physical form post-electrospinning. The composite fibers showed distinct thermosensitive properties and gave sustained release of CIF over more than 160h in vitro. The fibers could promote the proliferation of fibroblasts, and by varying the temperature cells could easily be attached to and detached from the fibers. Antibacterial tests demonstrated that fibers loaded with ciprofloxacin were effective in inhibiting the growth of E. coli and S. aureus. In vivo investigations on rats indicated that the composite PDEGMA/P(LLA-CL) fibers loaded with CIF had much more potent wound healing properties than a commercial gauze and CIF-loaded fibers made solely of P(LLA-CL). These results demonstrate the potential of PDEGMA/P(LLA-CL)/ciprofloxacin fibers as advanced wound dressing materials.


Materials Science and Engineering: C | 2017

Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials

Heyu Li; Gareth R. Williams; Junzi Wu; Haijun Wang; Xiaozhu Sun; Limin Zhu

In this work, we aimed to develop new materials to reduce the secondary injuries which can be imparted when replacing wound dressings. Electrospun fibers based on the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm), poly(l-lactic acid-co-ɛ-caprolactone) (PLCL), and the antibiotic ciprofloxacin (CIF) were prepared. The water contact angle of fibers made from a blend of PNIPAAm and PLCL changed dramatically when the temperature was increased above 32°C. Sustained release of CIF from the formulations was observed over >200h. Moreover, L929 fibroblasts could proliferate on the fibers, indicating their biocompatibility. The CIF-loaded fibers were found to have potent antibacterial activity against E. coli and S. aureus. In vivo tests on rats indicated that CIF-loaded thermosensitive fibers have enhanced healing performance compared to CIF-loaded PLCL fibers or a commercial gauze. Electrospun PNIPAAm/PLCL fibers loaded with CIF thus have great promise in the development of new wound dressing materials.


Materials Science and Engineering: C | 2016

Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery

Junzi Wu; David H. Bremner; Heyu Li; Xiao-zhu Sun; Limin Zhu

Poly N-vinylcaprolactam-co-acrylamidophenylboronic acid p(NVCL-co-AAPBA) was prepared from N-vinylcaprolactam (NVCL) and 3-acrylamidophenylboronic acid (AAPBA), using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesis and structure of the polymer were examined by Fourier Transform infrared spectroscopy (FT-IR) and (1)H-NMR. Dynamic light scattering (DLS), lower critical solution temperature (LCST) and transmission electron microscopy (TEM) were utilized to characterize the nanoparticles, CD spectroscopy was used to determine if there were any changes to the conformation of the insulin, and cell and animal toxicity were also investigated. The prepared nanoparticles were found to be monodisperse submicron particles and were glucose- and temperature-sensitive. In addition, the nanoparticles have good insulin-loading characteristics, do not affect the conformation of the insulin and show low-toxicity to cells and animals. These p(NVCL-co-AAPBA) nanoparticles may have some value for insulin or other hypoglycemic protein delivery.


Colloids and Surfaces B: Biointerfaces | 2017

A thermosensitive drug delivery system prepared by blend electrospinning

Heyu Li; Kailin Liu; Qingqing Sang; Gareth R. Williams; Junzi Wu; Haijun Wang; Jianrong Wu; Limin Zhu

In this study, the thermosensitive polymer poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) was synthesized and electrospun into fibers by blending with ethyl cellulose (EC). Fibers were additionally prepared loaded with ketoprofen (KET) as a model drug. Smooth cylindrical fibers could generally be observed by electron microscopy, although there were some beads and fused fibers visible in the KET-loaded materials. KET was found to be amorphously distributed in the fibers on the basis of X-ray diffraction data. From water contact angle measurements, it was clear that the wettability of the EC/PDEGMA systems changed as the temperature increased, with the fibers becoming markedly more hydrophobic. In vitro drug release studies showed that KET was released over a prolonged period of time with the fibers having different profiles at 25 and 37°C, reflecting their thermosensitive properties. Furthermore, the materials were found to have good biocompatibility towards L929 fibroblasts. Thus, the fibers prepared in this work have potential as smart stimuli-responsive drug delivery systems.


Carbohydrate Polymers | 2018

Regenerated chitin fibers reinforced with bacterial cellulose nanocrystals as suture biomaterials

Huanling Wu; Gareth R. Williams; Junzi Wu; Jianrong Wu; Shiwei Niu; Heyu Li; Haijun Wang; Limin Zhu

The objective of this work was to prepare a novel filament with good biocompatibility and mechanical performance which can meet the demands of surgical sutures. Bacterial cellulose nanocrystals (BCNCs) were used to reinforce regenerated chitin (RC) fibers to form BCNC/RC filaments. Mechanical performance measurements demonstrated that the strength of the BCNC/RC filament was increased dramatically over the RC analogue. A yarn made of 30 BCNC-loaded fibers also achieved satisfactory mechanical performance, with a knot-pull tensile strength of 9.8±0.6N. Enzymatic degradation studies showed the BCNC/RC materials to have good biodegradability, the rate of which can be tuned by varying the concentration of BCNCs in the yarn. The RC and the BCNC/RC materials had no cytotoxicity and can promote cell proliferation. In vivo experiments on mice demonstrated that suturing with the BCNC/RC yarn can promote wound healing without obvious adverse effects.


Drug Delivery | 2017

Insulin-loaded PLGA microspheres for glucose-responsive release

Junzi Wu; Gareth R. Williams; Heyu Li; Dongxiu Wang; Shu-De Li; Limin Zhu

Abstract Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N–vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83 ± 0.15 and 82.6 ± 5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes.


International Journal of Pharmaceutics | 2018

Dual-responsive drug delivery systems prepared by blend electrospinning

Heyu Li; Qingqing Sang; Junzi Wu; Gareth R. Williams; Haijun Wang; Shiwei Niu; Jianrong Wu; Limin Zhu

&NA; To prepare temperature and pH dual‐responsive drug delivery systems, the thermosensitive polymer poly(N‐isopropylacrylamide) (PNIPAAm) was first synthesized by free‐radical polymerization. It was then co‐dissolved with the pH‐sensitive polymer Eudragit® L100‐55 (EL100‐55) and processed into fibers using electrospinning. Ketoprofen (KET), a model drug, was also incorporated into the composite fibers, and fibers based on a single polymer additionally prepared. The fibers had smooth cylindrical morphologies, and no obvious phase separation could be seen. Using X‐ray diffraction, KET was determined to be present in the amorphous state in the fiber matrix. FTIR spectroscopy also indicated the successful incorporation of amorphous KET in the fibers. In vitro drug release studies in media at different pH (4.5 or 7.4) or temperature (25 and 37 °C) showed that the release of KET from the blend PNIPAAm/EL100‐55 fibers was dependent both on environmental temperature and pH, reflecting the dual‐responsive properties of the fibers. The MTT assay was used to explore the biocompatibility of the PNIPAAm/EL100‐55 composite fibers towards L929 fibroblasts. Viability was always found to be >80%, even at polymer concentrations of 100 mg/L. Therefore, the fibers prepared here could lead to the development of multi‐responsive materials for drug delivery and tissue engineering. Graphical abstract Figure. No caption available.


Materials Science and Engineering: C | 2017

Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose

Huanling Wu; David H. Bremner; Haijun Wang; Junzi Wu; Heyu Li; Jianrong Wu; Shiwei Niu; Limin Zhu

A high-strength regenerated bacterial cellulose (RBC)/bacterial cellulose (BC) microfilament of potential use as a biomaterial was successfully prepared via a wet spinning process. The BC not only consists of a 3-D network composed of nanofibers with a diameter of several hundred nanometers but also has a secondary structure consisting of highly oriented nanofibrils with a diameter ranging from a few nanometers to tens of nanometers which explains the reason for the high mechanical strength of BC. Furthermore, a strategy of partially dissolving BC was used and this greatly enhanced the mechanical performance of spun filament and a method called post-treatment was utilized to remove residual solvents from the RBC/BC filaments. A comparison of structure, properties, as well as cytocompatibility between BC nanofibers and RBC/BC microfilaments was achieved using morphology, mechanical properties, X-ray Diffraction (XRD) and an enzymatic hydrolysis assay. The RBC/BC microfilament has a uniform groove structure with a diameter of 50-60μm and XRD indicated that the crystal form was transformed from cellulose Iα to cellulose IIII and the degree of crystallinity of RBC/BC (33.22%) was much lower than the original BC (60.29%). The enzymatic hydrolysis assay proved that the RBC/BC material was more easily degraded than BC. ICP detection indicated that the residual amount of lithium was 0.07mg/g (w/w) and GC-MS analysis showed the residual amount of DMAc to be 8.51μg/g (w/w) demonstrating that the post-treatment process is necessary and effective for removal of residual materials from the RBC/BC microfilaments. Also, a cell viability assay demonstrated that after post-treatment the RBC/BC filaments had good cytocompatibility.


International Journal of Nanomedicine | 2017

Glucose- and temperature-sensitive nanoparticles for insulin delivery

Junzi Wu; Gareth R. Williams; Heyu Li; Dongxiu Wang; Huanling Wu; Shu-De Li; Limin Zhu

Glucose- and temperature-sensitive polymers of a phenylboronic acid derivative and diethylene glycol dimethacrylate (poly(3-acrylamidophenyl boronic acid-b-diethylene glycol methyl ether methacrylate); p(AAPBA-b-DEGMA)) were prepared by reversible addition–fragmentation chain transfer polymerization. Successful polymerization was evidenced by 1H nuclear magnetic resonance and infrared spectroscopy, and the polymers were further explored in terms of their glass transition temperatures and by gel permeation chromatography (GPC). The materials were found to be temperature sensitive, with lower critical solution temperatures in the region of 12°C–47°C depending on the monomer ratio used for reaction. The polymers could be self-assembled into nanoparticles (NPs), and the zeta potential and size of these particles were determined as a function of temperature and glucose concentration. Subsequently, the optimum NP formulation was loaded with insulin, and the drug release was studied. We found that insulin was easily encapsulated into the p(AAPBA-b-DEGMA) NPs, with a loading capacity of ~15% and encapsulation efficiency of ~70%. Insulin release could be regulated by changes in temperature and glucose concentration. Furthermore, the NPs were non-toxic both in vitro and in vivo. Finally, the efficacy of the formulations at managing blood glucose levels in a murine hyperglycemic diabetes model was studied. The insulin-loaded NPs could reduce blood glucose levels over an extended period of 48 h. Since they are both temperature and glucose sensitive and offer a sustained-release profile, these systems may comprise potent new formulations for insulin delivery.

Collaboration


Dive into the Junzi Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shu-De Li

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge