Juraj Bies
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juraj Bies.
Oncogene | 1997
Juraj Bies; Linda Wolff
c-myb activation by insertional mutagenesis in murine myeloid leukemias can lead to amino (NH2)-terminal or carboxyl (COOH)-terminal truncation of its protein product. We observed that in these leukemias, the steady state level of the protein truncated at the COOH terminus was remarkably higher than that of the protein truncated at the NH2-terminus or full length wild-type protein. To examine the rate of proteolysis of different forms of Myb in a uniform cellular background, the proteins were constitutively expressed in the myeloblast cell line M1, using the retrovirus vector LXSN. In pulse chase experiments, using metabolically 35S-labeled proteins, it was determined that COOH-terminal truncation of c-Myb by 248 aa (CT-c-Myb) substantially increases protein stability, resulting in a t1/2 of about 140 min, as compared to 50 min for full length c-Myb (FL-c-Myb). In an investigation of the mechanism involved in the in vivo degradation of this short lived transcription factor, inhibitors of the lysosomal (chloroquine), proteasomal (ALLM, ALLN, lactacystin) and calpains (EGTA, E-64d, BAPTA/AM) pathways were utilized. Results of this experiment identified the 26S proteasome as a major pathway responsible for rapid breakdown of the protein in hematopoietic cells. Further experiments carried out in vitro demonstrated that c-Myb can be ubiquitinated, suggesting that this process may be involved in the targeting of wild-type c-Myb to degradation by the 26S proteasome. In addition, it was demonstrated that CT-c-Myb was less efficiently ubiquitinated than wild-type protein indicating that defects in modification account for its escape from rapid turnover. We speculate that the increased half-life of c-Myb resulting from truncation could contribute to its transforming potential.
Cancer Research | 2007
Christopher Slape; Helge Hartung; Yingwei Lin; Juraj Bies; Linda Wolff; Peter D. Aplan
The t(2;11)(q31;p15) chromosomal translocation results in a fusion between the NUP98 and HOXD13 genes and has been observed in patients with myelodysplastic syndrome (MDS) or acute myelogenous leukemia. We previously showed that expression of the NUP98-HOXD13 (NHD13) fusion gene in transgenic mice results in an invariably fatal MDS; approximately one third of mice die due to complications of severe pancytopenia, and about two thirds progress to a fatal acute leukemia. In the present study, we used retroviral insertional mutagenesis to identify genes that might collaborate with NHD13 as the MDS transformed to an acute leukemia. Newborn NHD13 transgenic mice and littermate controls were infected with the MOL4070LTR retrovirus. The onset of leukemia was accelerated, suggesting a synergistic effect between the NHD13 transgene and the genes neighboring retroviral insertion events. We identified numerous common insertion sites located near protein-coding genes and confirmed dysregulation of a subset of these by expression analyses. Among these genes were Meis1, a known collaborator of HOX and NUP98-HOX fusion genes, and Mn1, a transcriptional coactivator involved in human leukemia through fusion with the TEL gene. Other putative collaborators included Gata2, Erg, and Epor. Of note, we identified a common insertion site that was >100 kb from the nearest coding gene, but within 20 kb of the miR29a/miR29b1 microRNA locus. Both of these miRNA were up-regulated, demonstrating that retroviral insertional mutagenesis can target miRNA loci as well as protein-coding loci. Our data provide new insights into NHD13-mediated leukemogenesis as well as retroviral insertional mutagenesis mechanisms.
Journal of Biological Chemistry | 2006
Marek Sramko; Jan Markus; Juraj Kabát; Linda Wolff; Juraj Bies
Post-translational modifications, such as phosphorylation, acetylation, ubiquitination, and SUMOylation, play an important role in regulation of the stability and the transcriptional activity of c-Myb. Conjugation of small ubiquitin-like modifier type 1 (SUMO-1) to lysines in the negative regulatory domain strongly suppresses its transcriptional activity. Here we report conjugation of two other members of the SUMO protein family, SUMO-2 and SUMO-3, and provide evidence that this post-translational modification negatively affects transcriptional activity of c-Myb. Conjugation of SUMO-2/3 proteins is strongly enhanced by several different cellular stresses and occurs primarily on two lysines, Lys523 and Lys499. These lysines are in the negative regulatory domain of c-Myb and also serve as acceptor sites for SUMO-1. Stress-induced SUMO-2/3 conjugation is very rapid and independent of activation of stress-activated protein kinases of the SAPK and JNK families. PIAS-3 protein was identified as a new c-Myb-specific SUMO-E3 ligase that both catalyzes conjugation of SUMO-2/3 proteins to c-Myb and exerts a negative effect on c-Myb-induced reporter gene activation. Interestingly, co-expression of a SPRING finger mutant of PIAS-3 significantly suppresses SUMOylation of c-Myb under stress. These results argue that PIAS-3 SUMO-E3 ligase plays a critical role in stress-induced conjugation of SUMO-2/3 to c-Myb. We also detected stress-induced conjugation of SUMO-2/3 to c-Myb in hematopoietic cells at the levels of endogenously expressed proteins. Furthermore, according to the negative role of SUMO conjugation on c-Myb capacity, we have observed rapid stress-induced down-regulation of the targets genes c-myc and bcl-2 of c-Myb. Our findings demonstrate that SUMO-2/3 proteins conjugate to c-Myb and negatively regulate its activity in cells under stress.
Oncogene | 2003
Linda Wolff; Matthew T. Garin; Richard Koller; Juraj Bies; Wei Liao; Marcos Malumbres; Lino Tessarollo; Douglas Powell
The Ink4b gene (Cdkn2b) encodes p15Ink4b, a cyclin-dependent kinase inhibitor. It has been implicated in playing a role in the development of acute myeloid leukemia (AML) in man, since it is hypermethylated with high frequency. We provide evidence that the gene is a tumor suppressor for myeloid leukemia in mice. The evidence is twofold: (1) retrovirus-induced myeloid leukemias of the myelomonocytic phenotype were found to have hypermethylation of the 5′ CpG island of the Ink4b gene, and this could be correlated with reduced mRNA expression, as demonstrated by TaqMan real-time PCR. p15Ink4b mRNA expression in a leukemia cell line, with hypermethylation at the locus, was induced following treatment with 5-aza-2′-deoxycytidine. (2) Targeted deletion of one allele in mice by removal of exon 2 increases their susceptibility to retrovirus-induced myeloid leukemia. Mice deficient in both alleles were not more susceptible to myeloid disease than those deficient in one allele, raising the possibility that there are opposing forces related to the development of myeloid leukemia in Ink4b null mice.
Journal of Clinical Investigation | 2012
Ryan A. Hlady; Slavomira Novakova; Jana Opavska; David Klinkebiel; Staci L. Peters; Juraj Bies; Jay Hannah; Javeed Iqbal; Kristi M. Anderson; Hollie M. Siebler; Lynette M. Smith; Timothy C. Greiner; Dhundy Bastola; Shantaram S. Joshi; Oksana Lockridge; Melanie A. Simpson; Dean W. Felsher; Kay Uwe Wagner; Wing C. Chan; Judith K. Christman; Rene Opavsky
DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b-/- lymphomas, but not in Dnmt3b-/- pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b-/- lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.
Oncogene | 2000
Juraj Bies; Sona Feiková; Donald P. Bottaro; Linda Wolff
The c-myb proto-oncogene encodes a nuclear phosphoprotein that plays a crucial role in normal hematopoiesis. It is a short-lived transcription factor rapidly degraded by the 26S proteasome. Although it has been shown that instability determinants reside in its carboxyl terminus, the molecular mechanism of c-Myb degradation is unknown. Here, we report the first evidence that phosphorylation plays a role in targeting the protein to the proteasome. Inhibition of cellular serine/threonine protein phosphatase activity by okadaic acid resulted in hyperphosphorylation of c-Myb and extremely rapid turnover. The hyperphosphorylation resulted in a protein with altered properties that was indicative of conformational changes. Its mobility on gel electrophoresis was altered as well as its recognition by specific monoclonal antibody. The altered hyperphosphorylated protein still bound to DNA with an affinity similar to that of the hypophosphorylated form. Phosphorylation of three previously identified sites, serines 11, 12, and 528, does not appear to be involved in the proposed changes in conformation or stability. However, phosphoamino acid analyses of the hyperphosphorylated form of c-Myb revealed increased c-Myb phosphorylation mainly on threonine residues that correlated with other okadaic acid-induced alterations of c-Myb. These findings indicate that Ser/Thr phosphatases prevent conformational changes that may play an important role in controlled degradation of c-Myb.
Cancer Research | 2007
Jan Markus; Matthew T. Garin; Juraj Bies; Naomi Galili; Azra Raza; Michael J. Thirman; Michelle M. Le Beau; Janet D. Rowley; P. Paul Liu; Linda Wolff
The tumor suppressor gene INK4b (p15) is silenced by CpG island hypermethylation in most acute myelogenous leukemias (AML), and this epigenetic phenomenon can be reversed by treatment with hypomethylating agents. Thus far, it was not investigated whether INK4b is hypermethylated in all cytogenetic subtypes of AML. A comparison of levels of INK4b methylation in AML with the three most common cytogenetic alterations, inv(16), t(8;21), and t(15;17), revealed a strikingly low level of methylation in all leukemias with inv(16) compared with the other types. Surprisingly, the expression level of INK4b in inv(16)+ AML samples was low and comparable with that of the other subtypes. An investigation into an alternative mechanism of INK4b silencing determined that the loss of INK4b expression was caused by inv(16)-encoded core binding factor beta-smooth muscle myosin heavy chain (CBFbeta-SMMHC). The silencing was manifested in an inability to activate the normal expression of INK4b RNA as shown in vitamin D3-treated U937 cells expressing CBFbeta-SMMHC. CBFbeta-SMMHC was shown to displace RUNX1 from a newly determined CBF site in the promoter of INK4b. Importantly, this study (a) establishes that the gene encoding the tumor suppressor p15(INK4b) is a target of CBFbeta-SMMHC, a finding relevant to the leukemogenesis process, and (b) indicates that, in patients with inv(16)-containing AML, reexpression from the INK4b locus in the leukemia would not be predicted to occur using hypomethylating drugs.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Beverly W. Baron; John Anastasi; Elizabeth Hyjek; Juraj Bies; Poluru L. Reddy; Jingfang Dong; Loren Joseph; Michael J. Thirman; Kristen Wroblewski; Linda Wolff; Joseph M. Baron
Diffuse large B-cell lymphomas in humans are associated with chromosomal rearrangements (∼40%) and/or mutations disrupting autoregulation (∼16%) involving the BCL6 gene. Studies of lymphoma development in humans and mouse models have indicated that lymphomagenesis evolves through the accumulation of multiple genetic alterations. Based on our prior studies, which indicated that carcinogen-induced DNA mutations enhance the incidence of lymphomas in our mouse model expressing a human BCL6 transgene, we hypothesized that mutated genes are likely to play an important cooperative role in BCL6-associated lymphoma development. We used retroviral insertional mutagenesis in an effort to identify which genes cooperate with BCL6 in lymphomagenesis in our BCL6 transgenic mice. We identified PIM1 as the most frequently recurring cooperating gene in our murine BCL6-associated lymphomas (T- and B-cell types), and we observed elevated levels of PIM1 mRNA and protein expression in these neoplasms. Further, immunohistochemical staining, which was performed in 20 randomly selected BCL6-positive human B- and T-cell lymphomas, revealed concurrent expression of BCL6 and PIM1 in these neoplasms. As PIM1 encodes a serine/threonine kinase, PIM1 kinase inhibition may be a promising therapy for BCL6/PIM1-positive human lymphomas.
Journal of Virology | 2012
Junfang Zhang; Jan Markus; Juraj Bies; Thomas A. Paul; Linda Wolff
ABSTRACT Retroviruses integrated into genomic DNA participate in long-range gene activation from as far away as several hundred kilobases. Hypotheses have been put forth to account for these phenomena, but data have not been provided to support a physical mechanism that explains long-range activation. In murine leukemia virus-induced myeloid leukemia in mice, integrated proviruses have been found upstream of c-myb in three regions, named Mml1, Mml2, and Mml3 (25, 50, and 70 kb upstream, respectively). The transcription factor c-Myb is an oncogene whose dysregulation and/or mutation can lead to human leukemia. We hypothesized that the murine c-myb upstream region contains regulatory elements accessed by the retrovirus. To identify regulatory sites in the murine c-myb upstream region, we looked by chromatin immunoprecipitation with microarray technology (ChIP-on-chip) for histone modifications implicating gene activation in normal cells. H3K4me3, H3K4me1, and H3K9/14ac were enriched at Mml1 and/or Mml2 in the myeloblastic cell line M1, which expresses c-myb. The enrichment of all of these histone marks decreased with differentiation-induced downregulation of the gene in M1 cells but increased and spread in tumor cells containing integrated provirus. Importantly, using chromosome conformation capture (3C)-quantitative PCR assays, interactions between the 5′ region, including the promoter and all Mml sites (Mml1, Mml2, and Mml3), were detected due to DNA looping in M1 cells and tumor cells with provirus in Mml1, Mml2, or Mml3. Therefore, our study provides a new mechanism of retrovirus insertional mutagenesis whereby spatial chromatin organization allows distally located provirus, with its own enhancer elements, to access the 5′ regulatory region of the gene.
Oncogene | 2001
Martina Schmidt; Richard Koller; Peter Haviernik; Juraj Bies; Karolina Maciag; Linda Wolff
Deregulated expression of the proto-oncogene c-myb, which results from provirus integration, is thought to be responsible for transformation in a set of murine leukemia virus (MuLV)-induced myeloid leukemias (MML). We reported recently that this transcription factor promotes proliferation by directly transactivating c-myc and inhibits cell death through its up-regulation of Bcl-2 (Schmidt et al., 2000). To understand more about how these cells become transformed we looked at how they deal with cellular pathways inducing growth arrest. Specifically, we were interested in the expression of the tumor suppressor gene Cdkn2b (p15INK4b) in MML because this gene is expressed during myeloid differentiation and its inactivation by methylation has been shown to be important for the development of human acute myeloid leukemia. mRNA levels for p15INK4b and another INK4 gene p16INK4a were examined in monocytic Myb tumors and were compared with expression of the same genes in c-myc transformed monocytic tumors that do not express c-Myb. The Cdkn2a (p16INK4a) gene was generally not expressed in either tumor type, an observation explained by methylation or deletion in the promoter region. Although Cdkn2b (p15INK4b) mRNA was expressed in the Myc tumors, many transcripts were aberrant in size and contained only exon 1. Surprisingly, in the majority of the Myb tumors there was no p15INK4b transcription and neither deletion nor methylation could explain this result. Additional experiments demonstrated that, in the presence of constitutive c-Myb expression, the induction of p15INK4b mRNA that accompanies differentiation of M1 cells to monocytes does not occur. Therefore, the transcriptional regulator c-Myb appears to prevent activation of a growth arrest pathway that normally accompanies monocyte maturation.