Juraj Krajčovič
Comenius University in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juraj Krajčovič.
Folia Microbiologica | 2008
L. Ebringer; Miroslav Ferenčík; Juraj Krajčovič
Milk is a complex physiological liquid that simultaneously provides nutrients and bioactive components that facilitate the successful postnatal adaptation of the newborn infant by stimulating cellular growth and digestive maturation, the establishment of symbiotic microflora, and the development of gut-associated lymphoid tissues. The number, the potency, and the importance of bioactive compounds in milk and especially in fermented milk products are probably greater than previously thought. They include certain vitamins, specific proteins, bioactive peptides, oligosaccharides, organic (including fatty) acids. Some of them are normal milk components, others emerge during digestive or fermentation processes. Fermented dairy products and probiotic bacteria decrease the absorption of cholesterol. Whey proteins, medium-chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy food on body fat and body mass. There has been growing evidence of the role that dairy proteins play in the regulation of satiety, food intake and obesity-related metabolic disorders. Milk proteins, peptides, probiotic lactic acid bacteria, calcium and other minerals can significantly reduce blood pressure. Milk fat contains a number of components having functional properties. Sphingolipids and their active metabolites may exert antimicrobial effects either directly or upon digestion.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2001
Lívia Križková; Zdena Ďuračková; Jozef Šandula; Vlasta Sasinková; Juraj Krajčovič
Antioxidative and antimutagenic effect of yeast cell wall mannans, in particular, extracellular glucomannan (EC-GM) and glucomannan (GM-C.u.) both from Candida utilis, mannan from Saccharomyces cerevisiae (M-S.c.) and mannan from Candida albicans (M-C.a.) was evaluated. Luminol-dependent photochemical method using trolox as a standard showed that EC-GM, GM-C.u., M-S.c. and M-C.a. have relatively good antioxidative properties. EC-GM exhibited the highest antioxidative activity, followed by GM-C.u. and M-S.c. M-C.a. showed the least antioxidative activity. These mannans were experimentally confirmed to exhibit different, statistically significant antimutagenic activity in reducing damage of chloroplast DNA of the flagellate Euglena gracilis induced by ofloxacin and acridine orange (AO). We suggest that the antimutagenic effect of EC-GM, GM-C.u., M-S.c. and M-C.a. against ofloxacin is based on their ability to scavenge reactive oxygen radicals. With AO, the reduction of the chloroplast DNA lession could be a result of the absorptive capacity of the mannans. The important characteristics of mannans isolated from the yeast cell walls, such as good water solubility, relatively small molecular weight (15-30kDa), and antimutagenic effect exerted through different mode of action, appear to be a promising features for their prospective use as a natural protective (antimutagenic) agents.
Letters in Applied Microbiology | 2006
D. Jurkovic; Livia Krizkova; R. Dusinsky; Anna Belicová; M. Sojka; Juraj Krajčovič; L. Ebringer
Aims: To identify enterococci isolated from sheep milk cheese – bryndza, and to compare differences in the composition of enterococcal microflora affected by the season, and to evaluate the potential presence of vancomycin resistance and virulence determinants.
Journal of Eukaryotic Microbiology | 2010
Sara Tucci; Rostislav Vacula; Juraj Krajčovič; Peter Proksch; William Martin
ABSTRACT. Euglena gracilis is able to synthesize adenosine triphosphate under anaerobic conditions through a malonyl‐independent fatty acid synthesis leading to wax ester fermentation. Mitochondrial fatty acid synthesis uses acetyl‐CoA and propionyl‐CoA as C2‐ and C3‐donors for de novo synthesis of even‐ and odd‐numbered fatty acids, respectively. Euglenas wax ester fermentation has only been described in the E. gracilis strain 1224‐5/25 Z. Here we investigate eight E. gracilis strains isolated in 1932–1958 from different localities in Europe and two bleached substrains of E. gracilis 1224‐5/25, obtained by treatment with streptomycin and ofloxacin, and examine their anaerobic growth, wax ester fermentation, and wax ester composition. Under ambient oxygen levels, all strains accumulated wax esters in concentrations between 0.3% and 3.5% of the dry weight, but the strains revealed marked differences in wax ester accumulation with respect to anaerobic growth. Most fermenting strains tested showed increased wax ester synthesis under anaerobic conditions as well as the increased synthesis of odd‐numbered fatty acids and alcohols suggesting an activation of the mitochondrial fatty acid biosynthesis pathway. Addition of the elongase inhibitor flufenacet to the growth medium specifically reduced the accumulation of odd‐numbered fatty acids and alcohols and tended to increase the overall yield of anaerobic wax esters.
Molecules | 2009
Milan Nagy; Lívia Križková; Pavel Mučaji; Zuzana Kontšeková; František Šeršeň; Juraj Krajčovič
Water infusions of Ligustrum delavayanum and Ligustrum vulgare leaves and eight phenolics isolated therefrom have been assayed in vitro on ofloxacin-induced genotoxicity in the unicellular flagellate Euglena gracilis. The tested compounds luteolin, quercetin, luteolin-7-glucoside, luteolin-7-rutinoside, quercetin-3-rutinoside, apigenin-7-rutinoside, tyrosol and esculetin inhibited the mutagenic activity of ofloxacin (43 µM) in E. gracilis. Water infusions from leaves of L. delavayanum and L. vulgare showed higher antimutagenic effect (pt < 0.001). The activity of these samples against ofloxacin (86 µM)-induced genotoxicity was lower, but statistically significant (pt < 0.05), excluding the water infusion of L. delavayanum leaves (pt < 0.01). Efficacy of quercetin, luteolin-7-rutinoside, apigenin-7-rutinoside was insignificant. The antimutagenic effect of most phenolics we studied could be clearly ascribed to their DPPH scavenging activity, substitution patterns and lipophilicity.
Mutation Research\/environmental Mutagenesis and Related Subjects | 1996
L. Ebringer; Jozef Dobias; Juraj Krajčovič; Jozef Polónyi; Lívia Križková; Nora Lahitová
The genotoxic effect of ofloxacin was significantly decreased by standard antimutagens (sodium selenite, ascorbic acid, butylated hydroxyanisole and butylated hydroxytoluene) in the unicellular flagellate Euglena gracilis. The antiofloxacin activity of sodium selenite was also documented by a bacterial test in which the repair-proficient strain Salmonella typhimurium TA102 was used.
Folia Microbiologica | 2007
Anna Belicová; Lívia Križková; Juraj Krajčovič; D. Jurkovic; M. Sojka; L. Ebringer; Roman Dušinský
Three hundred and ten enterococcal isolates (178Enterococcus faecium, 68E. durans, 49E. faecalis, 8E. italicus, 3E. gallinarum, 3E. casseliflavus, and 1E. hirae) from Slovak Bryndza cheese were evaluated for susceptibility to nine antimicrobial agents (vancomycin, teicoplanin, ampicillin, streptomycin, gentamicin, erythromycin, rifampicin, nitrofurantoin, and ciprofloxacin). All enterococcal isolates from Bryndza cheese were susceptible to ampicillin, streptomycin, gentamicin, vancomycin, and teicoplanin as determined by the disk diffusion method. Vancomycin resistance genesvanA andvanB were not detected. Resistance rates of enterococcal isolates to rifampicin, erythromycin, ciprofloxacin, and nitrofurantoin were 24, 26, 2, and 1 %, respectively. Thirty-six % ofE. faecium isolates and 22 % of theE. faecalis isolates were resistant to erythromycin. Resistance to rifampicin was similar inE. faecium (31 %) andE. faecalis (29 %). BothE. faecium andE. faecalis strains showed the same resistance to ciprofloxacin (2 %).E. durans isolates showed low levels of resistance to rifampicin, erythromycin, ciprofloxacin, and nitrofurantoin (1–4 %). Forty-eight (30 %) of theE. faecium isolates, two (3 %) of theE. durans isolates, and six (12 %) of theE. faecalis isolates exhibited multidrug resistance. The highest frequency of resistant enterococci was observed in Bryndza produced in winter season.
DNA Research | 2010
Matej Vesteg; Rostislav Vacula; Jürgen M. Steiner; Bianika Mateasikova; Wolfgang Löffelhardt; Broňa Brejová; Juraj Krajčovič
The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.
Folia Microbiologica | 2001
Anna Belicová; Lívia Križková; Milan Nagy; Juraj Krajčovič; L. Ebringer
Naturally occurring plant phenolics,p-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA) and gentisic acid (GA) (25–100 nmol/L) had protective effects on acridine orange (AO; 216 μmol/L)- and ofloxacin (3 μmol/L)-induced genotoxicity inSalmonella typhimurium. FA, GA and CA exhibited a significant concentration-dependent protective effect against the genotoxicity of AO and ofloxacin, with the exception of PA, which at all concentrations tested abolished the AO and ofloxacin genotoxicity. UV spectrophotometric measurements showed the interaction of PA, FA, GA and CA with AO but not with ofloxacin; this interaction is obviously responsible for the reduction of AO-inducedS. typhimurium mutagenicity. In the case of ofloxacin the antimutagenic effect of PA, FA, GA and CA is assumed to be a result of their ability to scavenge reactive oxygen species (ROS) produced by ofloxacin.
Journal of Biotechnology | 2015
Juraj Krajčovič; Matej Vesteg; Steven D. Schwartzbach
Euglenoid flagellates are mainly fresh water protists growing in highly diverse environments making them well-suited for a multiplicity of biotechnology applications. Phototrophic euglenids possesses complex chloroplasts of green algal origin bounded by three membranes. Euglena nuclear and plastid genome organization, gene structure and gene expression are distinctly different from other organisms. Our observations on the model organism Euglena gracilis indicate that transcription of both the plastid and nuclear genome is insensitive to environmental changes and that gene expression is regulated mainly at the post-transcriptional level. Euglena plastids have been proposed as a site for the production of proteins and value added metabolites of biotechnological interest. Euglena has been shown to be a suitable protist species to be used for production of several compounds that are used in the production of cosmeceuticals and nutraceuticals, such as α-tocopherol, wax esters, polyunsaturated fatty acids, biotin and tyrosine. The storage polysaccharide, paramylon, has immunostimulatory properties and has shown a promise for biomaterials production. Euglena biomass can be used as a nutritional supplement in aquaculture and in animal feed. Diverse applications of Euglena in environmental biotechnology include ecotoxicological risk assessment, heavy metal bioremediation, bioremediation of industrial wastewater and contaminated water.