Juraj Parajka
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juraj Parajka.
Water Resources Research | 2011
Ralf Merz; Juraj Parajka; Günter Blöschl
[1] Climate impact analyses are usually based on driving hydrological models by future climate scenarios, assuming that the model parameters calibrated to past runoff are representative of the future. In this paper we calibrate the parameters of a conceptual rainfall-runoff model to six consecutive 5 year periods between 1976 and 2006 for 273 catchments in Austria and analyze the temporal change of the calibrated parameters. The calibrated parameters representing snow and soil moisture processes show significant trends. For example, the parameter controlling runoff generation doubled, on average, in the 3 decades. Comparisons of different subregions, comparisons with independent data sets, and analyses of the spatial variability of the model parameters indicate that these trends represent hydrological changes rather than calibration artifacts. The trends can be related to changes in the climatic conditions of the catchments such as higher evapotranspiration and drier catchment conditions in the more recent years. The simulations suggest that the impact on simulated runoff of assuming time invariant parameters can be very significant. For example, if using the parameters calibrated to 1976 – 1981 for simulating runoff for the period 2001 – 2006, the biases of median flows are, on average, 15% and the biases of high flows are about 35%. The errors increase as the time lag between the simulation and calibration periods increases. The implications for hydrologic prediction in general and climate impact analyses in particular are discussed.
Water Resources Research | 2007
Juraj Parajka; Günter Blöschl; Ralf Merz
[1] We present a novel iterative regional calibration (IRC) method in which the model parameters of a number of catchments are calibrated simultaneously. The method exploits the spatial correlations of the parameters to condition their a priori distribution for each catchment. We use a sample of 320 catchments in Austria over a period of 22 years to test the method. The results indicate that the IRC method allows us to reliably calibrate the conceptual hydrologic model used here. The novel method reduces the uncertainty of most parameters as compared to local calibration. This is demonstrated by more consistent model parameters in two independent calibration periods and by an analysis of their spatial variability. Jackknife cross validation indicates that the IRC method tends to improve runoff simulation performance for ungauged catchments as compared to traditional regionalization, although the gain is small in absolute terms.
Water Resources Research | 2009
Ralf Merz; Juraj Parajka; Günter Blöschl
[1] We simulate the water balance dynamics of 269 catchments in Austria ranging in size from 10 to 130,000 km 2 using a semidistributed conceptual model with 11 parameters based on a daily time step. The simulation results suggest that the Nash-Sutcliffe model efficiencies increase over the scale range of 10 and 10,000 km 2 . The scatter of the model performances decreases with catchment scale, particularly the volume errors. This implies that the model simulates the long-term water balance more reliably as one goes up in scale. Most calibrated parameters do not change with catchment scale, but there is a trend with catchment area of the upper and lower envelope curves of some parameters. We also examine time scale effects. Calibration efficiencies decrease and verification efficiencies increase with the number of years available for calibration. The change in efficiencies is largest between 1 and 5 years used for calibration. This suggests that a calibration period of 5 years captures most of the temporal hydrological variability, so this would be the minimum for achieving a reasonable predictive model performance. The correlation of model parameters between different calibration periods, as a measure of the degree to which parameters can be identified, increases with increasing length of the calibration period. For some parameters, the correlation increases beyond 5 years of calibration. This suggest that although runoff may be simulated well using 5 years of calibration, some parameters may not be well constrained and hence internal state variables and fluxes may still be associated with larger uncertainties than with a larger calibration period.
Environmental Microbiology | 2015
Domenico Savio; Lucas Sinclair; Umer Zeeshan Ijaz; Juraj Parajka; Georg H. Reischer; Philipp Stadler; Alfred Paul Blaschke; Günter Blöschl; Robert L. Mach; Alexander K. T. Kirschner; Andreas H. Farnleitner; Alexander Eiler
Summary The bacterioplankton diversity in large rivers has thus far been under‐sampled despite the importance of streams and rivers as components of continental landscapes. Here, we present a comprehensive dataset detailing the bacterioplankton diversity along the midstream of the Danube River and its tributaries. Using 16S rRNA‐gene amplicon sequencing, our analysis revealed that bacterial richness and evenness gradually declined downriver in both the free‐living and particle‐associated bacterial communities. These shifts were also supported by beta diversity analysis, where the effects of tributaries were negligible in regards to the overall variation. In addition, the river was largely dominated by bacteria that are commonly observed in freshwaters. Dominated by the acI lineage, the freshwater SAR11 (LD12) and the P olynucleobacter group, typical freshwater taxa increased in proportion downriver and were accompanied by a decrease in soil and groundwater‐affiliated bacteria. Based on views of the meta‐community and River Continuum Concept, we interpret the observed taxonomic patterns and accompanying changes in alpha and beta diversity with the intention of laying the foundation for a unified concept for river bacterioplankton diversity.
Science | 2017
Günter Blöschl; Julia Hall; Juraj Parajka; Rui A. P. Perdigão; Bruno Merz; Berit Arheimer; Giuseppe T. Aronica; Ardian Bilibashi; Ognjen Bonacci; Marco Borga; Ivan Čanjevac; Attilio Castellarin; Giovanni Battista Chirico; Pierluigi Claps; Károly Fiala; N. A. Frolova; Liudmyla Gorbachova; Ali Gül; Jamie Hannaford; Shaun Harrigan; M. B. Kireeva; Andrea Kiss; Thomas R. Kjeldsen; Silvia Kohnová; Jarkko Koskela; Ondrej Ledvinka; Neil Macdonald; Maria Mavrova-Guirguinova; Luis Mediero; Ralf Merz
Flooding along the river Will a warming climate affect river floods? The prevailing sentiment is yes, but a consistent signal in flood magnitudes has not been found. Blöschl et al. analyzed the timing of river floods in Europe over the past 50 years and found clear patterns of changes in flood timing that can be ascribed to climate effects (see the Perspective by Slater and Wilby). These variations include earlier spring snowmelt floods in northeastern Europe, later winter floods around the North Sea and parts of the Mediterranean coast owing to delayed winter storms, and earlier winter floods in western Europe caused by earlier soil moisture maxima. Science, this issue p. 588 see also p. 552 Climate change is affecting the timing of river flooding across Europe. A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2015
G. Thirel; Vazken Andréassian; Charles Perrin; J.-N. Audouy; L. Berthet; Pamela J. Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; Göran Lindström; E. Martin; T. Mathevet; Ralf Merz; Juraj Parajka; Denis Ruelland; Jai Vaze
Abstract Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013, during which the results of a common testing experiment were presented. Prior to the workshop, the participants had been invited to test their own models on a common set of basins showing varying conditions specifically set up for the workshop. All these basins experienced changes, either in physical characteristics (e.g. changes in land cover) or climate conditions (e.g. gradual temperature increase). This article presents the motivations and organization of this experiment—that is—the testing (calibration and evaluation) protocol and the common framework of statistical procedures and graphical tools used to assess the model performances. The basins datasets are also briefly introduced (a detailed description is provided in the associated Supplementary material).
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2009
Juraj Parajka; Silvia Kohnová; Ralf Merz; Ján Szolgay; Kamila Hlavčová; Günter Blöschl
Abstract The main objective of this study is to compare the seasonality of selected precipitation and runoff characteristics in Austria and Slovakia. Monthly seasonality indices are analysed to interpret the long-term climatic behaviour, while the seasonality of extremes is analysed to understand flood occurrence. The analysis is based on mean monthly precipitation data at 555 (Austria) and 202 (Slovakia) stations, annual maximum daily precipitation at 520 (Austria) and 56 (Slovakia) stations, and mean monthly runoff and annual maximum floods at 258 (Austria) and 85 (Slovakia) gauging stations. The results suggest that the seasonality of the selected hydrological characteristics is an important indicator of flood processes, but varies considerably in space. The seasonality of extreme flood events and, hence flood processes, tends to change with the flood magnitude. This change is more pronounced in the lowland and hilly regions than it is in the mountains. Both in Austria and Slovakia, decades of flood seasonality exist.
Wiley Interdisciplinary Reviews: Water | 2015
Günter Blöschl; Ladislav Gaál; Julia Hall; Andrea Kiss; J. Komma; Thomas Nester; Juraj Parajka; Rui A. P. Perdigão; Lenka Plavcová; M. Rogger; J. L. Salinas; Alberto Viglione
There has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe. Methods are reviewed for assessing whether floods may increase in the future. Accounting for feedbacks within the human‐water system is important when assessing flood changes over lead times of decades or centuries. It is argued that an integrated flood risk management approach is needed for dealing with future flood risk with a focus on reducing the vulnerability of the societal system. WIREs Water 2015, 2:329–344. doi: 10.1002/wat2.1079 For further resources related to this article, please visit the WIREs website.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2015
Ladislav Gaál; Ján Szolgay; Silvia Kohnová; Kamila Hlavčová; Juraj Parajka; Alberto Viglione; Ralf Merz; Günter Blöschl
Abstract The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms. Editor Z.W. Kundzewicz
Water Resources Research | 2016
Alberto Viglione; Bruno Merz; Nguyen Viet Dung; Juraj Parajka; Thomas Nester; Günter Blöschl
Abstract Changes in the river flood regime may be due to atmospheric processes (e.g., increasing precipitation), catchment processes (e.g., soil compaction associated with land use change), and river system processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attributing flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e., fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their relative contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a case study set in Austria, where positive flood trends have been observed at many sites in the past decades. The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are estimated from rainfall data and simple hydrological modeling. Although the distributions of the contributions are rather wide, the attribution identifies precipitation change as the main driver of flood change in the study region. Overall, it is suggested that the extension from local attribution to a regional framework, including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood change attribution as the extension from local to regional flood frequency analysis.