Juraj Simunić
University of Split
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juraj Simunić.
Bioinformatics | 2012
Mario Novković; Juraj Simunić; Viktor Bojović; Alessandro Tossi; Davor Juretić
SUMMARYnAnuran tissues, and especially skin, are a rich source of bioactive peptides and their precursors. We here present a manually curated database of antimicrobial and other defense peptides with a total of 2571 entries, most of them in the precursor form with demarcated signal peptide (SP), acidic proregion(s) and bioactive moiety(s) corresponding to 1923 non-identical bioactive sequences. Search functions on the corresponding web server facilitate the extraction of six distinct SP classes. The more conserved of these can be used for searching cDNA and UniProtKB databases for potential bioactive peptides, for creating PROSITE search patterns, and for phylogenetic analysis.
PLOS ONE | 2013
Ivica Šamanić; Juraj Simunić; Karel Riha; Jasna Puizina
The evolutionary conserved Mre11/Rad50/Nbs1 complex functions as one of the guardians of genome integrity in eukaryotes; it is required for the double-strand break repair, meiosis, DNA checkpoint, and telomere maintenance. To better understand the role of the MRE11 gene in Arabidopsis, we performed comparative analysis of several mre11 alleles with respect to genome stability and meiosis. The mre11-4 and mre11-2 alleles presumably produce truncated MRE11 proteins composed of the first 499 and 529 amino acids, respectively. Although the putative MRE11 truncated proteins differ only by 30 amino acids, the mutants exhibited strikingly different phenotypes in regards to growth morphology, genome stability and meiosis. While the mre11-2 mutants are fully fertile and undergo normal meiosis, the mre11-4 plants are sterile due to aberrant repair of meiotic DNA breaks. Structural homology analysis suggests that the T-DNA insertion in the mre11-4 allele probably disrupted the putative RAD50 interaction and/or homodimerization domain, which is assumed to be preserved in mre11-2 allele. Intriguingly, introgression of the atm-2 mutant plant into the mre11-2 background renders the double mutant infertile, a phenotype not observed in either parent line. This data indicate that MRE11 partially compensates for ATM deficiency in meiosis of Arabidopsis.
Journal of Chemical Information and Modeling | 2015
Mara Kozić; Damir Vukičević; Juraj Simunić; Tomislav Rončević; Nikolinka Antcheva; Alessandro Tossi; Davor Juretić
The global spreading of multidrug resistance has motivated the search for new antibiotic classes including different types of antimicrobial peptides (AMPs). Computational methods for predicting activity in terms of the minimal inhibitory concentration (MIC) of AMPs can facilitate in silico design and reduce the cost of synthesis and testing. We have used an original method for separating training and test data sets, both of which contain the sequences and measured MIC values of non-homologous anuran peptides having the Rana-box disulfide motif at their C-terminus. Using a more flexible profiling methodology (sideways asymmetry moment, SAM) than the standard hydrophobic moment, we have developed a two-descriptor model to predict the bacteriostatic activity of Rana-box peptides against Gram-negative bacteria--the first multilinear quantitative structure-activity relationship model capable of predicting MIC values for AMPs of widely different lengths and low identity using such a small number of descriptors. Maximal values for SAMs, as defined and calculated in our method, furthermore offer new structural insight into how different segments of a peptide contribute to its bacteriostatic activity, and this work lays the foundations for the design of active artificial AMPs with this type of disulfide bridge.
Journal of Chemical Information and Modeling | 2012
Nédia Kamech; Damir Vukičević; Ali Ladram; Christophe Piesse; Julie Vasseur; Viktor Bojović; Juraj Simunić; Davor Juretić
Anuran skin is known to be a rich source of antimicrobial peptides although their therapeutic potential is often limited due to their toxicity against mammalian cells. The analysis of structure-activity relationships among anuran antimicrobial peptides provided the parameters to construct the Mutator tool for improving their selectivity for bacterial cells, by suggesting appropriate point substitutions. Double substitution analogues [K2, K16] of the Xenopus tropicalis peptide XT-7 and [I2, K19] of the Ascaphus truei peptide ascaphin-8 were predicted by this tool to have an increased therapeutic index (TI = HC(50)/MIC for erythrocytes with respect to bacteria) > 80. The mutated peptides were synthesized and respectively found to have experimental TI values > 130 for S. aureus or E. coli, a considerable improvement with respect to TI < 37 for the parent compounds. Circular dichroism studies of the mutated peptides suggested this may in part be due to variations in the α-helical structure. For P. aeruginosa, which is more resistant to XT-7, the TI increased in the mutated peptide from 5 to >270, also due to a significant improvement in minimal inhibitory concentration. We have shown that the Mutator tool is capable of suggesting limited variations in natural anuran peptides capable of increasing peptide selectivity, by decreasing toxicity against mammalian erythrocytes, in general without compromising antibacterial activity. The tool is freely available on the Mutator Web server at http://split4.pmfst.hr/mutator/.
Biochimica et Biophysica Acta | 2017
Tomislav Rončević; Goran Gajski; Nada Ilić; Ivana Goić-Barišić; Marija Tonkić; Larisa Zoranić; Juraj Simunić; Monica Benincasa; Marijana Mijaković; Alessandro Tossi; Davor Juretić
Antimicrobial peptides (AMPs) are promising candidates for new antibiotic classes but often display an unacceptably high toxicity towards human cells. A naturally produced C-terminal fragment of PGLa, named PGLa-H, has been reported to have a very low haemolytic activity while maintaining a moderate antibacterial activity. A sequential tandem repeat of this fragment, diPGLa-H, was designed, as well as an analogue with a Val to Gly substitution at a key position. These peptides showed markedly improved in vitro bacteriostatic and bactericidal activity against both reference strains and multidrug resistant clinical isolates of Gram-negative and Gram-positive pathogens, with generally low toxicity for human cells as assessed by haemolysis, cell viability, and DNA damage assays. The glycine substitution analogue, kiadin, had a slightly better antibacterial activity and reduced haemolytic activity, which may correlate with an increased flexibility of its helical structure, as deduced using molecular dynamics simulations. These peptides may serve as useful lead compounds for developing anti-infective agents against resistant Gram-negative and Gram-positive species.
Biochimica et Biophysica Acta | 2014
Juraj Simunić; Dražen Petrov; Tahar Bouceba; Nédia Kamech; Monica Benincasa; Davor Juretić
A method based on the use of signal peptide sequences from antimicrobial peptide (AMP) precursors was used to mine a placozoa expressed sequence tag database and identified a potential antimicrobial peptide from Trichoplax adhaerens. This peptide, with predicted sequence FFGRLKSVWSAVKHGWKAAKSR is the first AMP from a placozoan species, and was named trichoplaxin. It was chemically synthesized and its structural properties, biological activities and membrane selectivity were investigated. It adopts an α-helical structure in contact with membrane-like environments and is active against both Gram-negative and Gram-positive bacterial species (including MRSA), as well as yeasts from the Candida genus. The cytotoxic activity, as assessed by the haemolytic activity against rat erythrocytes, U937 cell permeabilization to propidium iodide and MCF7 cell mitochondrial activity, is significantly lower than the antimicrobial activity. In tests with membrane models, trichoplaxin shows high affinity for anionic prokaryote-like membranes with good fit in kinetic studies. Conversely, there is a low affinity for neutral eukaryote-like membranes and absence of a dose dependent response. With high selectivity for bacterial cells and no homologous sequence in the UniProt, trichoplaxin is a new potential lead compound for development of broad-spectrum antibacterial drugs.
Plant Biology | 2016
Ivica Šamanić; Ratko Cvitanić; Juraj Simunić; Jasna Puizina
Given the fundamental role of MRE11 in many aspects of DNA metabolism and signalling in eukaryotes, we analysed the impact of several MRE11 mutations on DNA damage response (DDR) and DNA repair in Arabidopsis thaliana. Three different atmre11 and an atatm-2 mutant lines, together with the wild type (WT), were compared using a new Arabidopsis genotoxic assay for inxa0situ evaluation of genome integrity and DNA damage repair efficiency after double strand break (DSB) induction. The results showed that, despite the phenotypic differences and different lengths of the putative truncated AtMRE11 proteins, all three atmre11 and the atatm-2 mutant lines exhibited common hypersensitivity to bleomycin treatment, where they only slightly reduced mitotic activity, indicating a G2/M checkpoint abrogation. In contrast to the WT, which reduced the frequency of chromosomal aberrations throughout the recovery period after treatment, none of the three atmre11 and atatm-2 mutants recovered. Moreover, atmre11-3 mutants, similarly to atatm-2 mutants, failed to transcriptionally induce several DDR genes and had altered expression of the CYCB1;1::GUS protein. Nevertheless, numerous chromosomal fusions in the atmre11 mutants, observed after DNA damage induction, suggest intensive DNA repair activity. These results indicate that functional and full-length AtMRE11 is essential for activation of the cell cycle arrest, transcriptional regulation and DNA repair upon induction of DSB.
Biophysical Chemistry | 2018
Davor Juretić; Željana Bonačić Lošić; Domagoj Kuić; Juraj Simunić; Andrej Dobovišek
Movement of charges during enzyme catalytic cycle may be due to conformational changes, or to fast electron or proton transfer, or to both events. In each case, entropy production can be calculated using Terrel L. Hills method, if relevant microscopic rate constants are known. When ranked by their evolutionary distance from putative common ancestor, three β-lactamases considered in this study show correspondingly increased catalytic constant, catalytic efficiency, and overall entropy production. The acylation and deacylation steps with concomitant proton shuttles are the most important contributors to overall entropy production. The maximal entropy production requirement for the ES↔EP or EP↔Eu202f+u202fP step leads to optimal rate constants, performance parameters, and entropy production values, which are close to those extracted from experiments and also rank in accordance with evolutionary distances. Concurrent maximization of entropy productions for both proton transfer steps revealed that evolvability potential of different β-lactamases is similarly high. These results may have implications in particular for latent potential of β-lactamases to evolve further and in general for selection of optimized enzymes through natural or directed evolution.
New Antimicrobials Workshop in Trieste, 25-26.5.2012 | 2013
Davor Juretić; Damir Vukičević; Nada Ilić; Mario Novković; Juraj Simunić; Viktor Bojović; Nédia Kamech; Alessandro Tossi
New Antimicrobials Workshop in Trieste, 25-26.5.2012 | 2013
Mario Novković; Juraj Simunić; Viktor Bojović; Alessandro Tossi; Davor Juretić