Juraj Velcicky
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juraj Velcicky.
Journal of the American Chemical Society | 2011
Juraj Velcicky; Arne Soicke; Roland Steiner; Hans‐Guenther Schmalz
A one-pot protocol for the cyanomethylation of aryl halides through a palladium-catalyzed reaction with isoxazole-4-boronic acid pinacol ester was developed. Mechanistically, the reaction proceeds through (1) Suzuki coupling, (2) base-induced fragmentation, and (3) deformylation as shown by characterization of all postulated intermediates. Under optimized conditions (PdCl(2)dppf, KF, DMSO/H(2)O, 130 °C) a broad spectrum of aryl bromides could be converted into arylacetonitriles with up to 88% yield.
Bioorganic & Medicinal Chemistry Letters | 2008
Achim Schlapbach; Roland Feifel; Stuart Hawtin; Richard Heng; Guido Koch; Henrik Moebitz; Laszlo Revesz; Clemens Scheufler; Juraj Velcicky; Rudolf Waelchli; Christine Huppertz
Pyrrolo-pyrimidones of the general structure 1 were synthesized and evaluated for their potential as MK2 inhibitors. Potent derivatives were discovered which inhibit MK2 in the nanomolar range and show potent inhibition of cytokine release from LPS-stimulated monocytes. These derivatives were shown to inhibit phosphorylation of hsp27, a downstream target of MK2 and are modestly selective in a panel of 28 kinases.
Bioorganic & Medicinal Chemistry Letters | 2010
Juraj Velcicky; Roland Feifel; Stuart Hawtin; Richard Heng; Christine Huppertz; Guido Koch; Markus Kroemer; Henrik Moebitz; Laszlo Revesz; Clemens Scheufler; Achim Schlapbach
New, selective 3-aminopyrazole based MK2-inhibitors were discovered by scaffold hopping strategy. The new derivatives proved to inhibit intracellular phosphorylation of hsp27 as well as LPS-induced TNFalpha release in cells. In addition, selected derivative 14e also inhibited LPS-induced TNFalpha release in vivo.
Bioorganic & Medicinal Chemistry Letters | 2010
Laszlo Revesz; Achim Schlapbach; Reiner Aichholz; Janet Dawson; Roland Feifel; Stuart Hawtin; Amanda Littlewood-Evans; Guido Koch; Markus Kroemer; Henrik Möbitz; Clemens Scheufler; Juraj Velcicky; Christine Huppertz
Spirocyclopropane- and spiroazetidine-substituted tetracycles 13D-E and 16A are described as orally active MK2 inhibitors. The spiroazetidine derivatives are potent MK2 inhibitors with IC(50)<3 nM and inhibit the release of TNFalpha (IC(50)<0.3 microM) from hPBMCs and hsp27 phosphorylation in anisomycin stimulated THP-1 cells. The spirocyclopropane analogues are less potent against MK2 (IC(50)=0.05-0.23 microM), less potent in cells (IC(50)<1.1 microM), but show good oral absorption. Compound 13E (100mg/kg po; bid) showed oral activity in rAIA and mCIA, with significant reduction of swelling and histological score.
Journal of Medicinal Chemistry | 2017
Juraj Velcicky; Wolfgang Miltz; Berndt Oberhauser; David Orain; Andrea Vaupel; Klaus Weigand; Janet Dawson King; Amanda Littlewood-Evans; Mark S. Nash; Roland Feifel; Pius Loetscher
A novel, selective, and efficacious GPR4 antagonist 13 was developed starting from lead compound 1a. While compound 1a showed promising efficacy in several disease models, its binding to a H3 receptor as well as a hERG channel prevented it from further development. Therefore, a new round of optimization addressing the key liabilities was performed and led to discovery of compound 13 with an improved profile. Compound 13 showed significant efficacy in the rat antigen induced arthritis as well as in the hyperalgesia and angiogenesis model at a well-tolerated dose of 30 mg/kg.
ACS Medicinal Chemistry Letters | 2018
Juraj Velcicky; Achim Schlapbach; Richard Heng; Laszlo Revesz; Daniel Pflieger; Ernst Blum; Stuart Hawtin; Christine Huppertz; Roland Feifel; Rene Hersperger
MAP-activated protein kinase 2 (MK2) plays an important role in the regulation of innate immune response as well as in cell survival upon DNA damage. Despite its potential for the treatment of inflammation and cancer, to date no MK2 low molecular weight inhibitors have reached the clinic, mainly due to inadequate absorption, distribution, metabolism, and excretion (ADME) properties. We describe here an approach based on specifically placed fluorine within a recently described pyrrole-based MK2 inhibitor scaffold for manipulation of its physicochemical and ADME properties. While preserving target potency, the novel fluoro-derivatives showed greatly improved permeability as well as enhanced solubility and reduced in vivo clearance leading to significantly increased oral exposure.
Bioorganic & Medicinal Chemistry | 2017
Wolfgang Miltz; Juraj Velcicky; Janet Dawson; Amanda Littlewood-Evans; Marie-Gabrielle Ludwig; Klaus Seuwen; Roland Feifel; Berndt Oberhauser; Arndt Meyer; Daniela Gabriel; Mark S. Nash; Pius Loetscher
GPR4, a G-protein coupled receptor, functions as a proton sensor being activated by extracellular acidic pH and has been implicated in playing a key role in acidosis associated with a variety of inflammatory conditions. An orally active GPR4 antagonist 39c was developed, starting from a high throughput screening hit 1. The compound shows potent cellular activity and is efficacious in animal models of angiogenesis, inflammation and pain.
Angewandte Chemie | 2004
Daniel Schlawe; André Majdalani; Juraj Velcicky; Erik Heßler; Thomas Wieder; Aram Prokop; Hans-Günther Schmalz
Chemistry: A European Journal | 2004
Juraj Velcicky; Andreas Lanver; Johann Lex; Aram Prokop; Thomas Wieder; Hans-Günther Schmalz
Angewandte Chemie | 2004
Daniel Schlawe; André Majdalani; Juraj Velcicky; Erik Heßler; Thomas Wieder; Aram Prokop; Hans-Günther Schmalz