Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jure Leskovec is active.

Publication


Featured researches published by Jure Leskovec.


knowledge discovery and data mining | 2011

Friendship and mobility: user movement in location-based social networks

Eunjoon Cho; Seth A. Myers; Jure Leskovec

Even though human movement and mobility patterns have a high degree of freedom and variation, they also exhibit structural patterns due to geographic and social constraints. Using cell phone location data, as well as data from two online location-based social networks, we aim to understand what basic laws govern human motion and dynamics. We find that humans experience a combination of periodic movement that is geographically limited and seemingly random jumps correlated with their social networks. Short-ranged travel is periodic both spatially and temporally and not effected by the social network structure, while long-distance travel is more influenced by social network ties. We show that social relationships can explain about 10% to 30% of all human movement, while periodic behavior explains 50% to 70%. Based on our findings, we develop a model of human mobility that combines periodic short range movements with travel due to the social network structure. We show that our model reliably predicts the locations and dynamics of future human movement and gives an order of magnitude better performance than present models of human mobility.


ACM Transactions on The Web | 2007

The dynamics of viral marketing

Jure Leskovec; Lada A. Adamic; Bernardo A. Huberman

We present an analysis of a person-to-person recommendation network, consisting of 4 million people who made 16 million recommendations on half a million products. We observe the propagation of recommendations and the cascade sizes, which we explain by a simple stochastic model. We analyze how user behavior varies within user communities defined by a recommendation network. Product purchases follow a ‘long tail’ where a significant share of purchases belongs to rarely sold items. We establish how the recommendation network grows over time and how effective it is from the viewpoint of the sender and receiver of the recommendations. While on average recommendations are not very effective at inducing purchases and do not spread very far, we present a model that successfully identifies communities, product, and pricing categories for which viral marketing seems to be very effective.


ACM Transactions on Knowledge Discovery From Data | 2007

Graph evolution: Densification and shrinking diameters

Jure Leskovec; Jon M. Kleinberg; Christos Faloutsos

How do real graphs evolve over time? What are normal growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network or in a very small number of snapshots; these include heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior even at a qualitative level. We provide a new graph generator, based on a forest fire spreading process that has a simple, intuitive justification, requires very few parameters (like the flammability of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the forest fire model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of relation between densification and the degree distribution.


international world wide web conferences | 2010

Predicting positive and negative links in online social networks

Jure Leskovec; Daniel P. Huttenlocher; Jon M. Kleinberg

We study online social networks in which relationships can be either positive (indicating relations such as friendship) or negative (indicating relations such as opposition or antagonism). Such a mix of positive and negative links arise in a variety of online settings; we study datasets from Epinions, Slashdot and Wikipedia. We find that the signs of links in the underlying social networks can be predicted with high accuracy, using models that generalize across this diverse range of sites. These models provide insight into some of the fundamental principles that drive the formation of signed links in networks, shedding light on theories of balance and status from social psychology; they also suggest social computing applications by which the attitude of one user toward another can be estimated from evidence provided by their relationships with other members of the surrounding social network.


web search and data mining | 2011

Patterns of temporal variation in online media

Jaewon Yang; Jure Leskovec

Online content exhibits rich temporal dynamics, and diverse realtime user generated content further intensifies this process. However, temporal patterns by which online content grows and fades over time, and by which different pieces of content compete for attention remain largely unexplored. We study temporal patterns associated with online content and how the contents popularity grows and fades over time. The attention that content receives on the Web varies depending on many factors and occurs on very different time scales and at different resolutions. In order to uncover the temporal dynamics of online content we formulate a time series clustering problem using a similarity metric that is invariant to scaling and shifting. We develop the K-Spectral Centroid (K-SC) clustering algorithm that effectively finds cluster centroids with our similarity measure. By applying an adaptive wavelet-based incremental approach to clustering, we scale K-SC to large data sets. We demonstrate our approach on two massive datasets: a set of 580 million Tweets, and a set of 170 million blog posts and news media articles. We find that K-SC outperforms the K-means clustering algorithm in finding distinct shapes of time series. Our analysis shows that there are six main temporal shapes of attention of online content. We also present a simple model that reliably predicts the shape of attention by using information about only a small number of participants. Our analyses offer insight into common temporal patterns of the content on theWeb and broaden the understanding of the dynamics of human attention.


web search and data mining | 2011

Supervised random walks: predicting and recommending links in social networks

Lars Backstrom; Jure Leskovec

Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms state-of-the-art unsupervised approaches as well as approaches that are based on feature extraction.


human factors in computing systems | 2010

Signed networks in social media

Jure Leskovec; Daniel P. Huttenlocher; Jon M. Kleinberg

Relations between users on social media sites often reflect a mixture of positive (friendly) and negative (antagonistic) interactions. In contrast to the bulk of research on social networks that has focused almost exclusively on positive interpretations of links between people, we study how the interplay between positive and negative relationships affects the structure of on-line social networks. We connect our analyses to theories of signed networks from social psychology. We find that the classical theory of structural balance tends to capture certain common patterns of interaction, but that it is also at odds with some of the fundamental phenomena we observe --- particularly related to the evolving, directed nature of these on-line networks. We then develop an alternate theory of status that better explains the observed edge signs and provides insights into the underlying social mechanisms. Our work provides one of the first large-scale evaluations of theories of signed networks using on-line datasets, as well as providing a perspective for reasoning about social media sites.


knowledge discovery and data mining | 2010

Inferring networks of diffusion and influence

Manuel Gomez Rodriguez; Jure Leskovec; Andreas Krause

Information diffusion and virus propagation are fundamental processes talking place in networks. While it is often possible to directly observe when nodes become infected, observing individual transmissions (i.e., who infects whom or who influences whom) is typically very difficult. Furthermore, in many applications, the underlying network over which the diffusions and propagations spread is actually unobserved. We tackle these challenges by developing a method for tracing paths of diffusion and influence through networks and inferring the networks over which contagions propagate. Given the times when nodes adopt pieces of information or become infected, we identify the optimal network that best explains the observed infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient approximation algorithm that scales to large datasets and in practice gives provably near-optimal performance. We demonstrate the effectiveness of our approach by tracing information cascades in a set of 170 million blogs and news articles over a one year period to infer how information flows through the online media space. We find that the diffusion network of news tends to have a core-periphery structure with a small set of core media sites that diffuse information to the rest of the Web. These sites tend to have stable circles of influence with more general news media sites acting as connectors between them.


knowledge discovery and data mining | 2016

node2vec: Scalable Feature Learning for Networks

Aditya Grover; Jure Leskovec

Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a nodes network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.


international conference on data mining | 2010

Modeling Information Diffusion in Implicit Networks

Jaewon Yang; Jure Leskovec

Social media forms a central domain for the production and dissemination of real-time information. Even though such flows of information have traditionally been thought of as diffusion processes over social networks, the underlying phenomena are the result of a complex web of interactions among numerous participants. Here we develop the Linear Influence Model where rather than requiring the knowledge of the social network and then modeling the diffusion by predicting which node will influence which other nodes in the network, we focus on modeling the global influence of a node on the rate of diffusion through the (implicit) network. We model the number of newly infected nodes as a function of which other nodes got infected in the past. For each node we estimate an influence function that quantifies how many subsequent infections can be attributed to the influence of that node over time. A nonparametric formulation of the model leads to a simple least squares problem that can be solved on large datasets. We validate our model on a set of 500 million tweets and a set of 170 million news articles and blog posts. We show that the Linear Influence Model accurately models influences of nodes and reliably predicts the temporal dynamics of information diffusion. We find that patterns of influence of individual participants differ significantly depending on the type of the node and the topic of the information.

Collaboration


Dive into the Jure Leskovec's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaewon Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian McAuley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge