Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Brojatsch is active.

Publication


Featured researches published by Jürgen Brojatsch.


Retrovirology | 2012

Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac

Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Tommy E. White; Nadine Laguette; Monsef Benkirane; Jürgen Brojatsch; Felipe Diaz-Griffero

BackgroundSAMHD1 is a nuclear protein that blocks lentiviral infection before reverse transcription in macrophages and dendritic cells. The viral accessory protein Vpx overcomes the SAMHD1-mediated lentiviral block by inducing its proteasomal degradation.ResultsHere, we identified the nuclear localization signal (NLS) of SAMHD1, and studied its contribution to restriction of HIV-1 and SIVmac. By studying the cellular distribution of different SAMHD1 variants, we mapped the nuclear localization of SAMHD1 to residues 11KRPR14. Mutagenesis of these residues changed the cellular distribution of SAMHD1 from the nucleus to the cytoplasm. SAMHD1 mutants that lost nuclear localization restricted HIV-1 and SIV as potently as the wild type protein. Interestingly, SAMHD1 mutants that localized to the cytoplasm were not degraded by nuclear Vpx alleles. Therefore, nuclear Vpx alleles require nuclear localization of SAMHD1 in order to induce its degradation. In agreement, SIVmac viruses encoding Vpx did not overcome the restriction imposed by the cytoplasmic variants of SAMHD1.ConclusionsWe mapped the NLS of SAMHD1 to residues 11KRPR14 and studied the contribution of SAMHD1 nuclear localization to restriction of HIV-1 and SIV. These experiments demonstrate that cytoplasmic variants of SAMHD1 potently block lentiviral infection and are resistant to Vpx-mediated degradation. The nuclear Vpx alleles studied here are only capable of degrading a nuclearly localized SAMHD1 suggesting that Vpx-mediated degradation of SAMHD1 is initiated in the nucleus.


Virology | 2013

Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1

Tommy E. White; Alberto Brandariz-Nuñez; Jose Carlos Valle-Casuso; Sarah M. Amie; Laura A. Nguyen; Baek Kim; Jürgen Brojatsch; Felipe Diaz-Griffero

The human SAMHD1 protein is a novel retroviral restriction factor expressed in myeloid cells. Previous work has correlated the deoxynucleotide triphosphohydrolase activity of SAMHD1 with its ability to block HIV-1 and SIV(mac) infection. SAMHD1 is comprised of the sterile alpha motif (SAM) and histidine-aspartic (HD) domains; however the contribution of these domains to retroviral restriction is not understood. Mutagenesis and deletion studies revealed that expression of the sole HD domain of SAMHD1 is sufficient to achieve potent restriction of HIV-1 and SIV(mac). We demonstrated that the HD domain of SAMHD1 is essential for the ability of SAMHD1 to oligomerize by using a biochemical assay. In agreement with previous observations, we mapped the RNA-binding ability of SAMHD1 to the HD domain. We also demonstrated a direct interaction of SAMHD1 with RNA by using enzymatically-active purified SAMHD1 protein from insect cells. Interestingly, we showed that double-stranded RNA inhibits the enzymatic activity of SAMHD1 in vitro suggesting the possibility that RNA from a pathogen might modulate the enzymatic activity of SAMHD1 in cells. By contrast, we found that the SAM domain is dispensable for retroviral restriction, oligomerization and RNA binding. Finally we tested the ability of SAMHD1 to block the infection of retroviruses other than HIV-1 and SIV(mac). These results showed that SAMHD1 blocks infection of HIV-2, feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Equine infectious anemia virus (EIAV), N-tropic murine leukemia virus (N-MLV), and B-tropic murine leukemia virus (B-MLV).


PLOS Pathogens | 2005

Anthrax Lethal Toxin-Mediated Killing of Human and Murine Dendritic Cells Impairs the Adaptive Immune Response

Abdelkrim Alileche; Evan R. Serfass; Stefan M. Muehlbauer; Steven A. Porcelli; Jürgen Brojatsch

Many pathogens have acquired strategies to combat the immune response. Bacillus anthracis interferes with host defenses by releasing anthrax lethal toxin (LT), which inactivates mitogen-activated protein kinase pathways, rendering dendritic cells (DCs) and T lymphocytes nonresponsive to immune stimulation. However, these cell types are considered resistant to killing by LT. Here we show that LT kills primary human DCs in vitro, and murine DCs in vitro and in vivo. Kinetics of LT-mediated killing of murine DCs, as well as cell death pathways induced, were dependent upon genetic background: LT triggered rapid necrosis in BALB/c-derived DCs, and slow apoptosis in C57BL/6-derived DCs. This is consistent with rapid and slow killing of LT-injected BALB/c and C57BL/6 mice, respectively. We present evidence that anthrax LT impairs adaptive immunity by specifically targeting DCs. This may represent an immune-evasion strategy of the bacterium, and contribute to anthrax disease progression. We also established that genetic background determines whether apoptosis or necrosis is induced by LT. Finally, killing of C57BL/6-derived DCs by LT mirrors that of human DCs, suggesting that C57BL/6 DCs represent a better model system for human anthrax than the prototypical BALB/c macrophages.


Cell Cycle | 2007

Anthrax Lethal Toxin Kills Macrophages in a Strain-Specific Manner by Apoptosis or Caspase-1-Mediated Necrosis

Stefan M. Muehlbauer; Teresa H. Evering; Gloria Bonuccelli; Raynal C. Squires; Anthony W. Ashton; Steven A. Porcelli; Michael P. Lisanti; Jürgen Brojatsch

Murine macrophages have been classified as either susceptible or nonsusceptible to killing by anthrax lethal toxin (LT) depending upon genetic background. While considered resistant to LT killing, we found that bone marrow-derived macrophages (BMMs) from DBA/2, AKR, and C57BL/6 mice were slowly killed by apoptosis following LT exposure. LT killing was not restricted to in vitro assays, as splenic macrophages were also depleted in LT-injected C57BL/6 mice. Human macrophages, also considered LT resistant, similarly underwent slow apoptosis in response to LT challenge. In contrast, LT triggered rapid necrosis and a broad protein release in BMMs derived from BALB/c and C3H/HeJ, but not C57BL/6 mice. Released proteins included processed interleukin-18, confirming reports of inflammasome and caspase-1 activation in LT-mediated necrosis in macrophages. Complete inhibition of caspase-1 activity was required to block LT-mediated necrosis. Strikingly, minimal residual caspase-1 activity was sufficient to trigger significant necrosis in LT-treated macrophages, indicating the toxicity of caspase-1 in this process. IL-18 release does not trigger cytolysis, as IL-18 is released late and only from LT-treated macrophages undergoing membrane perturbation. We propose that caspase-1-mediated macrophage necrosis is the source of the cytokine storm and rapid disease progression reported in LT-treated BALB/c mice.


Infection and Immunity | 2009

Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages.

Adel M. Nour; Yee Guide Yeung; Laura Santambrogio; Eric D. Boyden; E. Richard Stanley; Jürgen Brojatsch

ABSTRACT Multiple microbial components trigger the formation of an inflammasome complex that contains pathogen-specific nucleotide oligomerization and binding domain (NOD)-like receptors (NLRs), caspase-1, and in some cases the scaffolding protein ASC. The NLR protein Nalp1b has been linked to anthrax lethal toxin (LT)-mediated cytolysis of murine macrophages. Here we demonstrate that in unstimulated J774A.1 macrophages, caspase-1 and Nalp1b are membrane associated and part of ∼200- and ∼800-kDa complexes, respectively. LT treatment of these cells resulted in caspase-1 recruitment to the Nalp1b-containing complex, concurrent with processing of cytosolic caspase-1 substrates. We further demonstrated that Nalp1b and caspase-1 are able to interact with each other. Intriguingly, both caspase-1 and Nalp1b were membrane associated, while the caspase-1 substrate interleukin-18 was cytosolic. Caspase-1-associated inflammasome components included, besides Nalp1b, proinflammatory caspase-11 and the caspase-1 substrate α-enolase. Asc was not part of the Nalp1b inflammasome in LT-treated macrophages. Taken together, our findings suggest that LT triggers the formation of a membrane-associated inflammasome complex in murine macrophages, resulting in cleavage of cytosolic caspase-1 substrates and cell death.


Journal of Biological Chemistry | 2007

Proteasomes Control Caspase-1 Activation in Anthrax Lethal Toxin-mediated Cell Killing

Raynal C. Squires; Stefan M. Muehlbauer; Jürgen Brojatsch

Activation of caspase-1 through the inflammasome protein Nalp1b controls anthrax lethal toxin (LT)-induced necrosis in murine macrophages. In this study we analyzed physiological changes controlled by caspase-1 in LT-treated murine macrophages. The caspase-1 inhibitor Boc-D-cmk blocked caspase-1 activity and membrane impairment in LT-treated cells. To determine the relationship between caspase-1 activation and membrane integrity, we added Boc-D-cmk to J774A.1 macrophages at different time points following LT exposure. Remarkably, Boc-D-cmk rescued LT-treated macrophages, even when added at the peak of caspase-1 activation. Late addition of the caspase-1 inhibitor reversed the losses of plasma membrane integrity and metabolic activity in these cells. Similar results were obtained with the proteasome inhibitor MG132, one of the most potent inhibitors of LT toxicity. LT-treated macrophages displaying evidence of membrane impairment recovered upon the addition of MG132, mirroring the Boc-D-cmk response. Strikingly, late addition of proteasome inhibitors also abrogated caspase-1 activity in LT-treated macrophages. Proteasomal control of caspase-1 activity and membrane impairment, however, was restricted to LT-induced cytolysis, because proteasome inhibitors did not block caspase-1 activation and cell death triggered by lipopolysaccharide and nigericin. Our findings indicate that proteasome inhibitors do not target caspase-1 directly but instead control an upstream event in LT-treated macrophages leading to caspase-1 activation. Taken together, caspase-1-mediated necrosis appears to be tightly controlled and differentially regulated by proteasomes depending on the source of caspase-1 induction.


Cell Cycle | 2013

Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death

Heriberto Lima; Lee S. Jacobson; Michael F. Goldberg; Kartik Chandran; Felipe Diaz-Griffero; Michael P. Lisanti; Jürgen Brojatsch

The Nod-like receptor, Nlrp3, has been linked to inflammatory diseases and adjuvant-mediated immune responses. A wide array of structurally diverse agents does not interact directly with Nlrp3, but is thought to activate the Nlrp3 inflammasome by inducing a common upstream signal, such as lysosome rupture. To test the connection between lysosome integrity and Nlrp3 signaling, we analyzed inflammasome activation following stimulation of murine macrophages with lysosome-destabilizing agents and pyroptosis inducers. Here we provide evidence that lysosomal rupture and the corresponding release of lysosomal hydrolases is an early event in macrophages exposed to the lysosome-destabilizing adjuvants LLOMe and alum. Lysosome rupture preceded cell death induction mediated by these agents and was associated with the degradation of low-molecular weight proteins, including the inflammasome component caspase-1. Proteolysis of caspase-1 was controlled by specific cathepsins, but was independent of autocatalytic processes and Nlrp3 signaling. Consistent with these findings, lysosome-disrupting agents triggered only minimal caspase-1 activation and failed to cause caspase-1-dependent cell death (pyroptosis), generally associated with Nlrp3 signaling. In contrast, lysosome rupture was a late event in macrophages exposed to prototypical pyroptosis inducers. These agents triggered extensive Nlrp3 signaling prior to lysosome rupture with only minimal impact on the cellular proteome. Taken together, our findings suggest that lysosome impairment triggers a cascade of events culminating in cell death but is not crucial for Nlrp3 signaling. The significant differences observed between lysosome-disrupting agents and pyroptosis inducers might explain the distinct immunologic responses associated with these compounds.


Journal of Virology | 2002

Endocytosis Is a Critical Step in Entry of Subgroup B Avian Leukosis Viruses

Felipe Diaz-Griffero; Steven Ari Hoschander; Jürgen Brojatsch

ABSTRACT The avian leukosis virus (ALV) entry mechanism is controversial, with evidence for and against a low-pH requirement for viral fusion. To further address this question, we tested the entry of human immunodeficiency virus type 1 (HIV-1) pseudotyped with the envelope protein of subgroup B ALV (ALV-B) in the presence of three different lysosomotropic agents. These lysosomotropic agents were able to block the entry of wild-type and pseudotyped ALV-B in two different cell lines, strongly suggesting that ALV-B requires a low-pH step for entry. ALV-B and pH-dependent Semliki Forest virus (SFV) entered cells with slower uptake kinetics than HIV-1, which is pH independent. These slow uptake rates support the theory that ALV-B utilizes endocytic pathways to enter cells. Using immunofluorescence and electron microscopy analysis, we visualized the colocalization of virus particles with the endosomal marker transferrin and demonstrated virus particles in clathrin-coated vesicles and endosome-like structures. Surprisingly, a low-pH treatment did not overcome the inhibition of ALV-B entry by lysosomotropic agents. This indicates that, in contrast to SFV, ALV-B is unable to fuse at the cellular surface, even at a low pH. Taken together, our findings suggest that endocytosis and a subsequent low-pH step are critical for successful ALV-B infection.


Journal of Biological Chemistry | 2007

Identification of an in vivo inhibitor of Bacillus anthracis spore germination

Monique Akoachere; Raynal C. Squires; Adel M. Nour; Ludmyl Angelov; Jürgen Brojatsch; Ernesto Abel-Santos

Germination of Bacillus anthracis spores into the vegetative form is an essential step in anthrax pathogenicity. This process can be triggered in vitro by the common germinants inosine and alanine. Kinetic analysis of B. anthracis spore germination revealed synergy and a sequential mechanism between inosine and alanine binding to their cognate receptors. Because inosine is a critical germinant in vitro, we screened inosine analogs for the ability to block in vitro germination of B. anthracis spores. Seven analogs efficiently blocked this process in vitro. This led to the identification of 6-thioguanosine, which also efficiently blocked spore germination in macrophages and prevented killing of these cells mediated by B. anthracis spores. 6-Thioguanosine shows potential as an anti-anthrax therapeutic agent.


Journal of Biological Chemistry | 2007

Identification of an in vivo inhibitor of Bacillus anthracis sterne spore germination

Monique Akoachere; Raynal C. Squires; Adel M. Nour; Ludmyl Angelov; Jürgen Brojatsch; Ernesto Abel-Santos

Germination of Bacillus anthracis spores into the vegetative form is an essential step in anthrax pathogenicity. This process can be triggered in vitro by the common germinants inosine and alanine. Kinetic analysis of B. anthracis spore germination revealed synergy and a sequential mechanism between inosine and alanine binding to their cognate receptors. Because inosine is a critical germinant in vitro, we screened inosine analogs for the ability to block in vitro germination of B. anthracis spores. Seven analogs efficiently blocked this process in vitro. This led to the identification of 6-thioguanosine, which also efficiently blocked spore germination in macrophages and prevented killing of these cells mediated by B. anthracis spores. 6-Thioguanosine shows potential as an anti-anthrax therapeutic agent.

Collaboration


Dive into the Jürgen Brojatsch's collaboration.

Top Co-Authors

Avatar

Felipe Diaz-Griffero

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Stefan M. Muehlbauer

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lee S. Jacobson

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Heriberto Lima

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Goldman

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge