Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Brück is active.

Publication


Featured researches published by Jürgen Brück.


Journal of Experimental Medicine | 2011

Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells

Kamran Ghoreschi; Jürgen Brück; Christina Kellerer; Caishu Deng; Haiyan Peng; Oliver Rothfuss; Rehana Z. Hussain; Anne R. Gocke; Annedore Respa; Ivana Glocova; Nadejda Valtcheva; Eva Alexander; Susanne Feil; Robert Feil; Klaus Schulze-Osthoff; Rudolf A. Rupec; Amy E. Lovett-Racke; Ralf Dringen; Michael K. Racke; Martin Röcken

Fumarates suppress Th1 responses by blocking IL-12 and IL-23 production by dendritic cells via distinct pathways.


International Journal of Cancer | 2000

Genetic immunization of mice with human tyrosinase‐related protein 2: Implications for the immunotherapy of melanoma

Julia Steitz; Jürgen Brück; Kerstin Steinbrink; Alexander H. Enk; Jürgen Knop; Thomas Tüting

The melanosomal protein TRP2 expressed by melanocytes and most melanoma cells is an attractive, clinically relevant model antigen for the experimental development of melanoma immunotherapy in mice. A peptide shared by murine and human TRP2 can be recognized by melanoma‐reactive CTL in C57BL/6 mice, as well as in human melanoma patients. Previous experiments demonstrated that gene gun immunization of mice with plasmid DNA encoding autologous murine TRP2 was unable to induce protective immunity against B16 melanoma cells naturally expressing TRP2. In the present study, we investigated whether the use of cDNA encoding xenogeneic human TRP2, which is highly homologous to murine TRP2, would be more effective. Genetic immunization of mice with human TRP2 resulted in coat depigmentation as a sign of autoimmune‐mediated destruction of melanocytes and provided significant protection against metastatic growth of B16 melanoma. Induction of protective immunity was associated with TRP2‐reactive antibodies and CD8+ T cells. Furthermore, immunization with recombinant adenovirus was more effective than immunization with plasmid DNA using the gene gun. Our results provide new insights for the development of antigen‐specific immunotherapy of melanoma. Int. J. Cancer 86:89–94, 2000.


Nature Medicine | 2012

ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression

Wolfram Hoetzenecker; Bernd Echtenacher; Emmanuella Guenova; Konrad Hoetzenecker; Florian Woelbing; Jürgen Brück; Anna Teske; Nadejda Valtcheva; Kerstin Fuchs; Manfred Kneilling; Ji-Hyeon Park; Kyu-Han Kim; Kyu-Won Kim; Petra Hoffmann; Claus G. Krenn; Tsonwin Hai; Kamran Ghoreschi; Tilo Biedermann; Martin Röcken

Sepsis, sepsis-induced hyperinflammation and subsequent sepsis-associated immunosuppression (SAIS) are important causes of death. Here we show in humans that the loss of the major reactive oxygen species (ROS) scavenger, glutathione (GSH), during SAIS directly correlates with an increase in the expression of activating transcription factor 3 (ATF3). In endotoxin-stimulated monocytes, ROS stress strongly superinduced NF-E2–related factor 2 (NRF2)–dependent ATF3. In vivo, this ROS-mediated superinduction of ATF3 protected against endotoxic shock by inhibiting innate cytokines, as Atf3−/− mice remained susceptible to endotoxic shock even under conditions of ROS stress. Although it protected against endotoxic shock, this ROS-mediated superinduction of ATF3 caused high susceptibility to bacterial and fungal infections through the suppression of interleukin 6 (IL-6). As a result, Atf3−/− mice were protected against bacterial and fungal infections, even under conditions of ROS stress, whereas Atf3−/−Il6−/− mice were highly susceptible to these infections. Moreover, in a model of SAIS, secondary infections caused considerably less mortality in Atf3−/− mice than in wild-type mice, indicating that ROS-induced ATF3 crucially determines susceptibility to secondary infections during SAIS.


Gene Therapy | 2000

Efficient transduction of mature CD83 + dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity

Helmut Jonuleit; Thomas Tüting; J Steitz; Jürgen Brück; A. Giesecke; Kerstin Steinbrink; Jürgen Knop; Alexander H. Enk

We have developed a culture method for the foreign serum-free generation of highly immunostimulatory, CD83+ human dendritic cells (DC). In this study, we evaluated the feasibility and consequences of endogenously expressing antigens in mature DC using adenoviral vectors. Transduction of DC with Ad-EGFP demonstrated endogenous fluorescence in 50–85% of CD83+ DC. Ad-transduced DC stimulated the proliferation of allogeneic CD8+ and CD4+ T cells at low DC: T cell ratios. However, at high DC: T cell ratios the stimulatory capacity of Ad-transduced DC was suppressed. This immunosuppressive effect was confirmed by demonstrating that the stimulatory function of untreated DC could be suppressed in a dose-dependent manner by addition of Ad-transduced DC. Furthermore, transwell experiments suggested that direct cell contact was required. Taken together, our results demonstrate the feasibility of efficiently expressing antigens in CD83+ DC using adenoviruses. However, immunosuppressive effects must be considered and carefully studied before Ad-transduced DC are employed for clinical trials.


Gene Therapy | 2001

Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4 + T cell-dependent mechanism

Julia Steitz; Jürgen Brück; Jürgen Knop; Thomas Tüting

We previously showed that genetic immunization of C57BL/6 mice with recombinant adenovirus encoding human TRP2 (Ad-hTRP2) was able to circumvent tolerance and induce cellular and humoral immune responses to murine TRP2 associated with protection against metastatic growth of B16 melanoma. In the present study we compared delivery of Ad-hTRP2 with cultured dendritic cells (DC) and direct injections of Ad-hTRP2. We show that application of Ad-hTRP2 with cultured DC enhanced protective immunity to B16 melanoma cells. Most importantly, delivery of recombinant adenovirus with DC alters the character of the immune response resulting in preferential stimulation of strong cellular immunity in the absence of significant humoral immunity to the encoded antigen. Adoptive transfer of lymphocytes from mice immunized with Ad-hTRP2-transduced DC confirmed that cellular components of the immune response were responsible for rejection of B16 melanoma. The protective efficacy of Ad-hTRP2-transduced DC clearly depended on the presence of CD4+ T helper cells. Furthermore, AD-hTRP2-transduced DC, but not direct injection of Ad-hTRP2, were effective in the presence of neutralizing anti-adenoviral antibodies. These preclinical studies demonstrate the superiority of melanoma vaccines consisting of cultured DC transduced with recombinant adenoviruses encoding melanoma antigens.


Gene Therapy | 2002

Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity

Julia Steitz; Jürgen Brück; Andrea Gambotto; Jürgen Knop; Thomas Tüting

Mechanisms maintaining peripheral tolerance to self-antigens present a major obstacle for the development of antigen-specific melanoma vaccines, presumably because self-antigens are not able to stimulate a CD4 T-helper response. Using the melanosomal enzyme tyrosinase-related protein 2 (TRP2) expressed by melanocytes and most melanoma cells as a model self-antigen, we investigated whether linkage with a foreign immunogenic protein providing strong CD4 helper sequences would be able to circumvent tolerance and enhance the induction of antigen-specific tumor immunity. We found that genetic immunization of mice with cDNA encoding a fusion protein between enhanced green fluorescent protein (EGFP) from jellyfish and autologous murine TRP2 (EGFP.mTRP2) resulted in the stimulation of TRP2-reactive T cells in vivo. Importantly, immunization with EGFP.mTRP2 effectively protected mice against metastatic growth of B16 melanoma in the lungs and was associated with fur depigmentation as a sign of autoimmune-mediated destruction of melanocytes. Our results show that tumor vaccines consisting of self-antigens linked to immunogenic helper sequences can be successfully applied to the immunotherapy of melanoma and provide a scientific basis for the translation of this strategy in future clinical investigations.


F1000 Medicine Reports | 2014

Advances in treating psoriasis

Katharina Belge; Jürgen Brück; Kamran Ghoreschi

Psoriasis is a T helper (Th)17/Th1-mediated autoimmune disease affecting the skin and joints. So far, distinct traditional oral compounds and modern biologics have been approved in most countries for the treatment of patients with moderate to severe psoriasis or psoriatic arthritis. Yet, the anti-psoriatic therapeutic spectrum is to be extended by a number of novel targeted therapies including biologics and modern oral compounds. The next set of anti-psoriatic biologics targets mainly Th17-associated cytokines such as IL-17 or IL-23. In contrast, modern oral anti-psoriatics, such as dimethyl fumarate (DMF), apremilast or Janus kinase (JAK) inhibitors interfere with intracellular proteins and affect signaling pathways. Here we summarize the current systemic therapies for psoriasis and their immunological mechanism. The recent advances in psoriasis therapy will help treat our patients efficiently and complete our understanding of disease pathogenesis.


Gene Therapy | 2003

Priming of T cells with Ad-transduced DC followed by expansion with peptide-pulsed DC significantly enhances the induction of tumor-specific CD8 + T cells: implications for an efficient vaccination strategy

Helmut Jonuleit; Thomas Tüting; Jürgen Brück; Jürgen Knop; Alexander H. Enk

In recent years, vaccination strategies using antigen-presenting cells (APC) have been under investigation. Antigen delivery using genetic immunization through ex vivo transduction of dendritic cells (DC) is supposed to enhance the induction of antitumor responses in humans by activating a broad range of peptide-specific CD8+ T cells. In this study, we compared the potential of adenoviral (Ad)-transduced versus peptide-pulsed DC to induce melanoma-antigen (Ag)-specific T-cell responses in vitro. Whereas gp100-peptide-pulsed DC induced long-lasting specific CD8+ T-cell responses against single peptides, Ad-transduced DC induced broad and strong, specific immunity against various peptides of the gp100-Ag. Surprisingly, several restimulations led to decreasing gp100-specific and in parallel to increasing anti-adenoviral T-cell responses. Nevertheless, those anti-adenoviral T-cell responses provided an ‘adjuvant’ effect by inducing an early release of high amounts of IL-2/IFN-γ, therewith enhancing CTL induction in the initiation phase. Based on these data, we suggest a prime/boost vaccination strategy in melanoma patients – combining the use of Ad-DC and peptide-pulsed DC – to obtain efficient and long-term antitumor T-cell responses.


F1000Research | 2016

Recent advances in understanding psoriasis

Franziska C. Eberle; Jürgen Brück; Julia Holstein; Kiyoshi Hirahara; Kamran Ghoreschi

T helper (Th) cells producing interleukin (IL)-17, IL-22, and tumor necrosis factor (TNF) form the key T cell population driving psoriasis pathogenesis. They orchestrate the inflammation in the skin that results in the proliferation of keratinocytes and endothelial cells. Besides Th17 cells, other immune cells that are capable of producing IL-17-associated cytokines participate in psoriatic inflammation. Recent advances in psoriasis research improved our understanding of the cellular and molecular players that are involved in Th17 pathology and inflammatory pathways in the skin. The inflammation-driving actions of TNF in psoriasis are already well known and antibodies against TNF are successful in the treatment of Th17-mediated psoriatic skin inflammation. A further key cytokine with potent IL-17-/IL-22-promoting properties is IL-23. Therapeutics directly neutralizing IL-23 or IL-17 itself are now extending the therapeutic spectrum of antipsoriatic agents and further developments are on the way. The enormous progress in psoriasis research allows us to control this Th17-mediated inflammatory skin disease in many patients.


Journal of Immunology | 2014

Sulforaphane Protects from T Cell–Mediated Autoimmune Disease by Inhibition of IL-23 and IL-12 in Dendritic Cells

Julia Geisel; Jürgen Brück; Ivana Glocova; Katja Dengler; Tobias Sinnberg; Oliver Rothfuss; Michael J. Walter; Klaus Schulze-Osthoff; Martin Röcken; Kamran Ghoreschi

Sulforaphane (SFN), an isothiocyanate, is part of an important group of naturally occurring small molecules with anti-inflammatory properties. The published reports are best conceivable with an inhibition of T cell function, but the mode of action remains unknown. We therefore analyzed the effect of SFN on T cell–mediated autoimmune disease. Feeding mice with SFN protected from severe experimental autoimmune encephalomyelitis. Disease amelioration was associated with reduced IL-17 and IFN-γ expression in draining lymph nodes. In vitro, SFN treatment of T cells did not directly alter T cell cytokine secretion. In contrast, SFN treatment of dendritic cells (DCs) inhibited TLR4-induced IL-12 and IL-23 production, and severely suppressed Th1 and Th17 development of T cells primed by SFN-treated DCs. SFN regulated the activity of the TLR4-induced transcription factor NF-κB, without affecting the degradation of its inhibitor IκB-α. Instead, SFN treatment of DCs resulted in strong expression of the stress response protein heme oxygenase-1 (HO-1), which interacts with and thereby inhibits NF-κB p65. Consistent with these findings, HO-1 bound to p65 and subsequently inhibited the p65 activity at the IL23a and IL12b promoters. Importantly, SFN suppressed Il23a and Il12b expression in vivo and silenced Th17/Th1 responses within the CNS. Thus, our data show that SFN improves Th17/Th1-mediated autoimmune disease by inducing HO-1 and inhibiting NF-κB p65-regulated IL-23 and IL-12 expression.

Collaboration


Dive into the Jürgen Brück's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Geisel

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge