Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Fell is active.

Publication


Featured researches published by Jürgen Fell.


Nature Neuroscience | 2001

Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling

Jürgen Fell; Peter Klaver; Klaus Lehnertz; Thomas Grunwald; Carlo Schaller; Christian E. Elger; Guillén Fernández

In humans, distinct processes within the hippocampus and rhinal cortex support declarative memory formation. But do these medial temporal lobe (MTL) substructures directly cooperate in encoding new memories? Phase synchronization of gamma-band electroencephalogram (EEG) oscillations (around 40 Hz) is a general mechanism of transiently connecting neural assemblies. We recorded depth-EEG from within the MTL of epilepsy patients performing a memorization task. Successful as opposed to unsuccessful memory formation was accompanied by an initial elevation of rhinal–hippocampal gamma synchronization followed by a later desynchronization, suggesting that effective declarative memory formation is accompanied by a direct and temporarily limited cooperation between both MTL substructures.


Neurology | 2003

Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI.

Guillén Fernández; Karsten Specht; Susanne Weis; Indira Tendolkar; Markus Reuber; Jürgen Fell; Peter Klaver; J. Ruhlmann; Jürgen Reul; Christian E. Elger

Background: fMRI is becoming a standard tool for the presurgical lateralization and mapping of brain areas involved in language processing. However, its within-subject reproducibility has yet to be fully explored. Objective: To evaluate within-test and test–retest reliability of language fMRI in consecutive patients undergoing evaluation for epilepsy surgery. Methods: Thirty-four unselected patients were investigated once (within-test reliability) and 12 patients twice (test–retest reliability). The imaging series consisted of an alternating 25-second synonym judgment condition with a 25-second letter-matching condition repeated 15 times. Reproducibility of activation maps of the first and second half of session 1 or activation maps of sessions 1 and 2 was evaluated by comparing one global and three regional lateralization indexes (Broca’s area, remaining prefrontal cortex, temporoparietal area) and on a voxel-by-voxel basis (intraclass correlation coefficient, percentage overlap, correlation of t-values). Results: Global and regional language lateralization was achieved with high reliability within and across sessions. Reproducibility was evenly distributed across both hemispheres but not within each hemisphere. Frontal activations were more reliable than temporoparietal ones. Depending on the statistical threshold chosen, the voxel-by-voxel analysis revealed a mean overlap of activations derived from the first and second investigation of up to 48.9%. Conclusion: Language fMRI proved sufficiently reliable for the determination of global and regional lateralization of language representation in individual unselected patients with epilepsy.


Journal of Cognitive Neuroscience | 2009

Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making

Michael X Cohen; Christian E. Elger; Jürgen Fell

Electroencephalogram oscillations recorded both within and over the medial frontal cortex have been linked to a range of cognitive functions, including positive and negative feedback processing. Medial frontal oscillatory characteristics during decision making remain largely unknown. Here, we examined oscillatory activity of the human medial frontal cortex recorded while subjects played a competitive decision-making game. Distinct patterns of power and cross-trial phase coherence in multiple frequency bands were observed during different decision-related processes (e.g., feedback anticipation vs. feedback processing). Decision and feedback processing were accompanied by a broadband increase in cross-trial phase coherence at around 220 msec, and dynamic fluctuations in power. Feedback anticipation was accompanied by a shift in the power spectrum from relatively lower (delta and theta) to higher (alpha and beta) power. Power and cross-trial phase coherence were greater following losses compared to wins in theta, alpha, and beta frequency bands, but were greater following wins compared to losses in the delta band. Finally, we found that oscillation power in alpha and beta frequency bands were synchronized with the phase of delta and theta oscillations (“phase–amplitude coupling”). This synchronization differed between losses and wins, suggesting that phase–amplitude coupling might reflect a mechanism of feedback valence coding in the medial frontal cortex. Our findings link medial frontal oscillations to decision making, with relations among activity in different frequency bands suggesting a phase-utilizing coding of feedback valence information.


NeuroImage | 2008

Phase-locking within human mediotemporal lobe predicts memory formation.

Jürgen Fell; Eva Ludowig; Timm Rosburg; Nikolai Axmacher; Christian E. Elger

Lesion and imaging studies have demonstrated that encoding of declarative memories, i.e. consciously accessible events and facts, is supported by processes within the rhinal cortex and the hippocampus, two substructures of the mediotemporal lobe (MTL). Successful memory formation has, for instance, been shown to be accompanied by the rhinal N400 component, followed by a hippocampal positivity, as well as by transient rhinal-hippocampal phase synchronization. However, it has been an open question, which mediotemporal electroencephalogram (EEG) measures predict memory formation most accurately. Therefore, we analyzed and compared the association of different mediotemporal EEG measures with successful memory formation. EEG characteristics were extracted from intracranial rhinal and hippocampal depth recordings in 31 epilepsy patients performing a continuous word recognition paradigm. Classical event-related potential measures, rhinal-hippocampal synchronization, as well as inter-trial phase-locking and power changes within rhinal cortex and hippocampus were evaluated. We found that inter-trial phase-locking is superior to other EEG measures in predicting subsequent memory. This means that memory formation is related to the precise timing of EEG phases within the MTL with respect to stimulus onset. In particular, early rhinal and hippocampal phase-locking in the alpha/beta range reaching its maximum already between 100 and 300 ms after stimulus onset appears to be a precursor of successful memory formation. Our data suggest that early mediotemporal phase adjustments constitute a relevant mechanism underlying declarative memory encoding.


Cerebral Cortex | 2008

Interaction of Working Memory and Long-Term Memory in the Medial Temporal Lobe

Nikolai Axmacher; Daniel P. Schmitz; Ilona Weinreich; Christian E. Elger; Jürgen Fell

Recent findings indicate that regions in the medial temporal lobe (MTL) do not only play a crucial role in long-term memory (LTM) encoding, but contribute to working memory (WM) as well. However, very few studies investigated the interaction between these processes so far. In a new functional magnetic resonance imaging paradigm comprising both a complex WM task and an LTM recognition task, we found not only that some items were successfully processed in WM but later forgotten, but also that a significant number of items which were not successfully processed in the WM task were subsequently recognized. Activation in the parahippocampal cortex (PHC) during successful WM was predictive of subsequent LTM, but was correlated with subsequent forgetting if the WM task was not successfully solved. The contribution of the PHC to LTM encoding thus crucially depends on whether an item was successfully processed in the WM task. Functional connectivity analysis revealed that across-trial fluctuations in PHC activity were correlated with activation in extensive regions if WM and LTM tasks were correctly solved, whereas connectivity broke down during unsuccessful attempts to do the task, suggesting that activity in the PHC during WM has to be well controlled to support LTM formation.


NeuroImage | 2006

Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings

Peter Trautner; Timm Rosburg; Thomas Dietl; Jürgen Fell; Oleg Korzyukov; Martin Kurthen; Carlo Schaller; Christian E. Elger; Nashaat N. Boutros

Oscillatory activity in the gamma band range (30-50 Hz) and its functional relation to auditory evoked potentials (AEPs) is yet poorly understood. In the current study, we capitalized on the advantage of intracranial recordings and studied gamma band activity (GBA) in an auditory sensory gating experiment. Recordings were obtained from the lateral surface of the temporal lobe in 34 epileptic patients undergoing presurgical evaluation. Two kinds of activity were differentiated: evoked (phase locked) and induced (not phase locked) GBA. In 18 patients, an intracranial P50 was observed. At electrodes with maximal P50, evoked GBA occurred with a similar peak latency as the P50. However, the intensities of P50 and evoked GBA were only modestly correlated, suggesting that the intracranial P50 does not represent a subset of evoked GBA. The peak frequency of the intracranial evoked GBA was on average relatively low (approximately 25 Hz) and is, therefore, probably not equivalent to extracranially recorded GBA which has normally a peak frequency of approximately 40 Hz. Induced GBA was detected in 10 subjects, nearly exclusively in the region of the superior temporal lobe. The induced GBA was increased after stimulation for several hundred milliseconds and encompassed frequencies up to 200 Hz. Single-trial analysis revealed that induced GBA occurred in relatively short bursts (mostly <<100 ms), indicating that the duration of the induced GBA in the averages originates from summation effects. Both types of gamma band activity showed a clear attenuation with stimulus repetition.


Reviews in The Neurosciences | 2002

The interaction of rhinal cortex and hippocampus in human declarative memory formation.

Jürgen Fell; Peter Klaver; Christian E. Elger; Guillén Fernández

Human declarative memory formation crucially depends on processes within the medial temporal lobe (MTL). These processes can be monitored in real-time by recordings from depth electrodes implanted in the MTL of patients with epilepsy who undergo presurgical evaluation. In our studies, patients performed a word memorization task during depth EEG recording. Afterwards, the difference between event-related potentials (ERPs) corresponding to subsequently remembered versus forgotten words was analyzed. These kind of studies revealed that successful memory encoding is characterized by an early process generated by the rhinal cortex within 300 ms following stimulus onset. This rhinal process precedes a hippocampal process, which starts about 200 ms later. Further investigation revealed that the rhinal process seems to be a correlate of semantic preprocessing which supports memory formation, whereas the hippocampal process appears to be a correlate of an exclusively mnemonic operation. These studies yielded only indirect evidence for an interaction of rhinal cortex and hippocampus. Direct evidence for a memory related cooperation between both structures, however, has been found in a study analyzing so called gamma activity, EEG oscillations of around 40 Hz. This investigation showed that successful as opposed to unsuccessful memory formation is accompanied by an initial enhancement of rhinal-hippocampal phase synchronization, which is followed by a later desynchronization. Present knowledge about the function of phase synchronized gamma activity suggests that this phase coupling and decoupling initiates and later terminates communication between the two MTL structures. Phase synchronized rhinal-hippocampal gamma activity may, moreover, accomplish Hebbian synaptic modifications and thus provide an initial step of declarative memory formation on the synaptic level.


Cortex | 2010

Sleep-dependent directional coupling between human neocortex and hippocampus

Tobias Wagner; Nikolai Axmacher; Klaus Lehnertz; Christian E. Elger; Jürgen Fell

Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex.


Clinical Neurophysiology | 2009

3D source localization derived from subdural strip and grid electrodes: A simulation study

Matthias Dümpelmann; Jürgen Fell; Jörg Wellmer; Horst Urbach; Christian E. Elger

OBJECTIVE Little experience exists in the application of source reconstruction methods to recordings from subdural strip and grid electrodes. This study addressed the question, whether reliable and accurate 3D source localization is possible from the Electrocorticogram (ECoG). METHODS The accuracy of source reconstruction was investigated by simulations and a case study. Simulated sources were used to compute potentials at the electrode positions derived from the MRI of a patient with subdural electrodes. Used procedures were the linear estimation (minimum norm) algorithm and the MUSIC (MUltiple SIgnal Classification) scan. RESULTS Maxima of linear estimation were attracted to adjacent electrodes. Reliable localization with a localization error 15 mm was only achieved for about 35% of the original source positions. Maxima of the MUSIC metric were identical to original positions for simulations without noise. Noise reduced the percentage of reliable solutions down to a 79.0%. Electrode contacts distant to the source had small influence on localization accuracy. The case study supported simulation results. CONCLUSION Reliable source reconstruction derived from ECoG can be achieved by the application of the MUSIC algorithm. Linear estimation needs additional compensation mechanisms. SIGNIFICANCE MUSIC based 3D localization based on ECoG has the potential improving epilepsy diagnosis and cognitive research.


Trends in Cognitive Sciences | 2013

Electrical engram: how deep brain stimulation affects memory

Hweeling Lee; Jürgen Fell; Nikolai Axmacher

Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinsons disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimers disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe.

Collaboration


Dive into the Jürgen Fell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Armin de Greiff

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge