Jürgen Goldschmidt
Leibniz Institute for Neurobiology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jürgen Goldschmidt.
PLOS ONE | 2012
Fahad Haroon; Ulrike Händel; Frank Angenstein; Jürgen Goldschmidt; Peter Kreutzmann; Holger Lison; Klaus-Dieter Fischer; Henning Scheich; Wolfram Wetzel; Dirk Schlüter; Eike Budinger
Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.
Neuroreport | 2004
Frank Angenstein; Heiko G. Niessen; Jürgen Goldschmidt; Stefan Vielhaber; Albert C. Ludolph; Henning Scheich
Mice over-expressing the mutant human G93A-SOD1 are widely used as an animal model of amyotrophic lateral sclerosis (ALS). ALS is characterized by progressive degeneration of motor neurons in the motor cortex, brain stem and spinal cord. The underlying mechanisms for the selective death of motor neurons are still uncertain. To study factors that cause selective neuron degeneration or therapeutic approaches to delay the progression of the disease, a method is required to monitor the state of motor neurons under in-vivo conditions. Here, we demonstrate that in G93A-SOD1 mice the MRI signal intensities of nucleus V, VII, XII, and nucleus ambiguus show a time-dependent increase starting around day 90, parallel to first behavioral signs of a motoneuron disorder.
NeuroImage | 2004
Jürgen Goldschmidt; Werner Zuschratter; Henning Scheich
Different methods are available for imaging neuronal activity in the mammalian brain with a spatial resolution sufficiently high to detect activation patterns at the level of individual functional modules such as cortical columns. Severe difficulties exist, however, in visualizing the different degree of activity of each individual neuron within such a module, and mapping neuronal activity with a spatial resolution of single axons has remained impossible thus far. Here, we present a novel method for mapping neuronal activity that is able to visualize activation patterns with light and electron microscopical resolution. The method is based on the tight coupling of neuronal activity and potassium (K(+)) uptake. We have injected Mongolian gerbils with the K(+) analogue thallium (Tl(+)), stimulated the animals with pure tones of different frequencies and analyzed, by an autometallographic method, the Tl(+) distribution in the auditory cortex (AC). We find tonotopically organized columns of increased Tl(+)-uptake in AC. Within columns, the spatial patterns of neuronal activity as revealed by thallium autometallography are highly elaborated. Tl(+)-uptake differs in different layers, sublayers, and cell types, being especially high in large multipolar inhibitory interneurons in layer IV. A prominent feature of the columnar activation pattern is the presence of vertical modules of minicolumnar dimensions. Clusters of layer Vb pyramidal cells and their apical dendrite bundles are clearly visible in the center of the columns.
NeuroImage | 2010
Jürgen Goldschmidt; Tim Wanger; Hergen Friedrich; Max F. K. Happel; Anton Ilango; Mario Engelmann; Ingo W. Stuermer; Frank W. Ohl; Henning Scheich
In neurons the rate of K(+)-uptake increases with increasing activity. K(+)-analogues like the heavy metal ion thallium (Tl(+)) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl(+)-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl(+)-uptake patterns are influenced by regional differences in blood-brain barrier (BBB) K(+)-permeability. We here show that the BBB-related limitations in using Tl(+) for imaging neuronal activity are no longer present when the lipophilic Tl(+) chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl(+)-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl(+)-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K(+)-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl(+)-distribution was essentially the same as after injection of water-soluble Tl(+)-salts, indicating Tl(+)-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl(+)-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl(+)-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.
Neuroreport | 2009
Tamar Macharadze; Jürgen Goldschmidt; Monika Marunde; Tim Wanger; Henning Scheich; Werner Zuschratter; Eckart D. Gundelfinger; Michael R. Kreutz
In this study, we report that partial unilateral optic nerve crush in the rat affects the number of retinal ganglion cells of the contralateral eye still in continuity with the ipsilateral superior colliculus. The reduction in cell number of the uncrossed retinal projection was accompanied by a microglia response and could be prevented by the local intravitreal application of the anti-inflammatory agent dexamethasone. Interestingly, the level of neuronal activity after optic nerve crush as evidenced by thallium autometallography was enhanced in the termination area of the uncrossed projection, the rostro-medial superior colliculus, suggesting that a dying-back mechanism is not involved. We propose that injury signals from the damaged optic nerve and retina are transduced to the unaffected eye.
Frontiers in Systems Neuroscience | 2011
Ben Coomber; Darren Edwards; Simon J. Jones; Trevor M. Shackleton; Jürgen Goldschmidt; Mark N. Wallace; Alan R. Palmer
Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other subcortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20–24°C among cells within a radius of about 2.5 mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C) but this was not sufficient to directly reduce neural activity. In an effort to visualize the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.
PLOS ONE | 2011
T. Heidt; Friederike Deininger; Karlheinz Peter; Jürgen Goldschmidt; Annette Pethe; Christoph E. Hagemeyer; Irene Neudorfer; Andreas Zirlik; Wolfgang A. Weber; Christoph Bode; Philipp T. Meyer; Martin Behe; Constantin von zur Muhlen
Background Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. Methodology/Principal Findings LIBS as well as an unspecific control single-chain antibody were labeled with 111Indium (111In) via bifunctional DTPA ( = 111In-LIBS/111In-control). Autoradiography after incubation with 111In-LIBS on activated platelets in vitro (mean 3866±28 DLU/mm2, 4010±630 DLU/mm2 and 4520±293 DLU/mm2) produced a significantly higher ligand uptake compared to 111In-control (2101±76 DLU/mm2, 1181±96 DLU/mm2 and 1866±246 DLU/mm2) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of 111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630±10650 DLU/mm2 vs. 17390±7470 DLU/mm2; P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with 111In-LIBS resulted in a significant increase of the target-to-background ratio compared to 111In-control (1.99±0.36 vs. 1.1±0.24; P<0.01). Conclusions/Significance Nuclear imaging with 111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application.
Scientific Reports | 2017
Mareike Töpperwien; Martin Krenkel; Daniel Vincenz; Franziska Stöber; Anja M. Oelschlegel; Jürgen Goldschmidt; Tim Salditt
Studies of brain cytoarchitecture in mammals are routinely performed by serial sectioning of the specimen and staining of the sections. The procedure is labor-intensive and the 3D architecture can only be determined after aligning individual 2D sections, leading to a reconstructed volume with non-isotropic resolution. Propagation-based x-ray phase-contrast tomography offers a unique potential for high-resolution 3D imaging of intact biological specimen due to the high penetration depth and potential resolution. We here show that even compact laboratory CT at an optimized liquid-metal jet microfocus source combined with suitable phase-retrieval algorithms and a novel tissue preparation can provide cellular and subcellular resolution in millimeter sized samples of mouse brain. We removed water and lipids from entire mouse brains and measured the remaining dry tissue matrix in air, lowering absorption but increasing phase contrast. We present single-cell resolution images of mouse brain cytoarchitecture and show that axons can be revealed in myelinated fiber bundles. In contrast to optical 3D techniques our approach does neither require staining of cells nor tissue clearing, procedures that are increasingly difficult to apply with increasing sample and brain sizes. The approach thus opens a novel route for high-resolution high-throughput studies of brain architecture in mammals.
NeuroImage | 2014
Angela Kolodziej; Michael Lippert; Frank Angenstein; Jenni Neubert; Annette Pethe; Oliver S. Grosser; Holger Amthauer; Ulrich Hendrich Schroeder; Klaus G. Reymann; Henning Scheich; Frank W. Ohl; Jürgen Goldschmidt
Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography.
NeuroImage | 2012
Ivayla Apostolova; Andreas Wunder; Ulrich Dirnagl; Roger Michel; Nina Stemmer; Mathias Lukas; Thorsten Derlin; Betina Gregor-Mamoudou; Jürgen Goldschmidt; Winfried Brenner; Ralph Buchert
Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans.