Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Haas is active.

Publication


Featured researches published by Jürgen Haas.


Immunity | 2013

The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response

Mathieu Blanc; Wei Yuan Hsieh; Kevin Robertson; Kai A. Kropp; Thorsten Forster; Guanghou Shui; Paul Lacaze; Steven Watterson; Samantha J. Griffiths; Nathanael J. Spann; Anna Meljon; Simon G. Talbot; Kathiresan Krishnan; Douglas F. Covey; Markus R. Wenk; Marie Craigon; Zsolts Ruzsics; Jürgen Haas; Ana Angulo; William J. Griffiths; Christopher K. Glass; Yuqin Wang; Peter Ghazal

Summary Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


PLOS Pathogens | 2009

Evolutionarily conserved herpesviral protein interaction networks.

Even Fossum; Caroline C. Friedel; Seesandra V. Rajagopala; Björn Titz; Armin Baiker; Tina Schmidt; Theo F. J. Kraus; Thorsten Stellberger; Christiane Rutenberg; Silpa Suthram; Sourav Bandyopadhyay; Dietlind Rose; Albrecht von Brunn; Mareike Uhlmann; Christine Zeretzke; Yu-An Dong; Hélène Boulet; Manfred Koegl; Susanne M. Bailer; Ulrich H. Koszinowski; Trey Ideker; Peter Uetz; Ralf Zimmer; Jürgen Haas

Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposis sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.


Journal of Alzheimer's Disease | 2016

Microbes and Alzheimer's Disease

Ruth F. Itzhaki; Richard Lathe; Brian J. Balin; Melvyn J. Ball; Elaine L. Bearer; Heiko Braak; María J. Bullido; Chris Carter; Mario Clerici; S. Louise Cosby; Kelly Del Tredici; Hugh J. Field; Tamas Fulop; Claudio Grassi; W. Sue T. Griffin; Jürgen Haas; Alan P. Hudson; Angela R. Kamer; Douglas B. Kell; Federico Licastro; Luc Letenneur; Hugo Lövheim; Roberta Mancuso; Judith Miklossy; Carola Otth; Anna Teresa Palamara; George Perry; Chris M. Preston; Etheresia Pretorius; Timo E. Strandberg

We are researchers and clinicians working on Alzheimer’s disease (AD) or related topics, and we write to express our concern that one particular aspect of the disease has been neglected, even thoug ...


Molecular Cell | 2001

Signaling by Human Herpesvirus 8 kaposin A through Direct Membrane Recruitment of cytohesin-1

Stefanie Kliche; Wolfgang Nagel; Elisabeth Kremmer; Christine Atzler; Alexander Ege; Thomas Knorr; Ulrich H. Koszinowski; Waldemar Kolanus; Jürgen Haas

The induction of a transformed cellular phenotype by viruses requires the modulation of signaling pathways through viral proteins. We show here that the phenotypic changes induced by the kaposin A protein of human herpesvirus 8 are mediated through its direct interaction with cytohesin-1, a guanine nucleotide exchange factor for ARF GTPases and regulator of integrin-mediated cell adhesion. Focus formation, stress fiber dissolution, and activation of the ERK-1/2 MAP kinase signal cascade were reverted by the cytohesin-1 E157K mutant, which is deficient in catalyzing guanine nucleotide exchange. Furthermore, liposome-embedded kaposin A specifically stimulates cytohesin-1 dependent GTP binding of myristoylated ARF1 in vitro. These results suggest a previously unknown involvement of ARF GTPases in the control of cellular functions by herpesviruses.


PLOS Pathogens | 2011

The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

Susanne Pfefferle; Julia Schöpf; Manfred Kögl; Caroline C. Friedel; Marcel A. Müller; Javier Carbajo-Lozoya; Thorsten Stellberger; Ekatarina von Dall’Armi; Petra Herzog; Stefan Kallies; Daniela Niemeyer; Vanessa Ditt; Thomas Kuri; Roland Züst; Ksenia Pumpor; Rolf Hilgenfeld; Frank Schwarz; Ralf Zimmer; Imke Steffen; Friedemann Weber; Volker Thiel; Georg Herrler; Heinz Jürgen Thiel; Christel Schwegmann-Weßels; Stefan Pöhlmann; Jürgen Haas; Christian Drosten; Albrecht von Brunn

Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.


Cell Host & Microbe | 2012

Salmonella Transforms Follicle-Associated Epithelial Cells into M Cells to Promote Intestinal Invasion

Amin Tahoun; Simmi M Mahajan; Edith Paxton; Georg Malterer; David S. Donaldson; Dai Wang; Alwyn Tan; Trudi Gillespie; Marie O’Shea; Andrew J. Roe; Darren Shaw; David L. Gally; Andreas Lengeling; Neil A. Mabbott; Jürgen Haas; Arvind Mahajan

Salmonella Typhimurium specifically targets antigen-sampling microfold (M) cells to translocate across the gut epithelium. Although M cells represent a small proportion of the specialized follicular-associated epithelium (FAE) overlying mucosa-associated lymphoid tissues, their density increases during Salmonella infection, but the underlying molecular mechanism remains unclear. Using in vitro and in vivo infection models, we demonstrate that the S. Typhimurium type III effector protein SopB induces an epithelial-mesenchymal transition (EMT) of FAE enterocytes into M cells. This cellular transdifferentiation is a result of SopB-dependent activation of Wnt/β-catenin signaling leading to induction of both receptor activator of NF-κB ligand (RANKL) and its receptor RANK. The autocrine activation of RelB-expressing FAE enterocytes by RANKL/RANK induces the EMT-regulating transcription factor Slug that marks epithelial transdifferentiation into M cells. Thus, via the activity of a single secreted effector, S. Typhimurium transforms primed epithelial cells into M cells to promote host colonization and invasion.


Journal of Virology | 2001

Identification of Two Sequences in the Cytoplasmic Tail of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein That Inhibit Cell Surface Expression

Andreas Bültmann; Walter Muranyi; Brian Seed; Jürgen Haas

ABSTRACT During synthesis and export of protein, the majority of the human immunodeficiency virus type 1 (HIV-1) Env glycoprotein gp160 is retained in the endoplasmic reticulum (ER) and subsequently ubiquitinated and degraded by proteasomes. Only a small fraction of gp160 appears to be correctly folded and processed and is transported to the cell surface, which makes it difficult to identify negative sequence elements regulating steady-state surface expression of Env at the post-ER level. Moreover, poorly localized mRNA retention sequences inhibiting the nucleocytoplasmic transport of viral transcripts interfere with the identification of these sequence elements. Using two heterologous systems with CD4 or immunoglobulin extracellular/transmembrane domains in combination with the gp160 cytoplasmic domain, we were able to identify two membrane-distal, neighboring motifs, is1 (amino acids 750 to 763) andis2 (amino acids 764 to 785), which inhibited surface expression and induced Golgi localization of the chimeric proteins. To prove that these two elements act similarly in the homologous context of the Env glycoprotein, we generated a synthetic gp160 gene with synonymous codons, the transcripts of which are not retained within the nucleus. In accordance with the results in heterologous systems, an internal deletion of both elements considerably increased surface expression of gp160.


PLOS ONE | 2011

Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

Benedikt Fritzsching; Jürgen Haas; Fatima König; Pierre Kunz; Eva Fritzsching; Johannes Pöschl; Peter H. Krammer; Wolfgang Brück; Elisabeth Suri-Payer; Brigitte Wildemann

Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion.


Gastroenterology | 2011

Inhibitory Molecules That Regulate Expansion and Restoration of HCV-Specific CD4+ T Cells in Patients With Chronic Infection

Bijan Raziorrouh; Axel Ulsenheimer; Winfried Schraut; Malte Heeg; Peter Kurktschiev; Reinhart Zachoval; M.C. Jung; Robert Thimme; Christoph Neumann–Haefelin; Sophia Horster; Martin Wächtler; Michael Spannagl; Jürgen Haas; Helmut M. Diepolder; Norbert Grüner

BACKGROUND & AIMS Inhibitory receptors such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen (CTLA)-4 mediate CD8+ T-cell exhaustion during chronic viral infection, but little is known about roles in dysfunction of CD4+ T cells. METHODS We investigated the functions of inhibitory molecules on hepatitis C virus (HCV)-, influenza-, and Epstein-Barr virus (EBV)-specific CD4+ T cells in patients with chronic infections compared with patients with resolved HCV infection and healthy donors. Expression of PD-1, CTLA-4, CD305, and CD200R were analyzed on HCV-specific CD4+ T cells, isolated from peripheral blood using major histocompatibility complex class II tetramers. We investigated the effects of in vitro inhibition of various inhibitory pathways on proliferation and cytokine production by CD4+ T cells, and we compared these effects with those from inhibition of interleukin (IL)-10 and transforming growth factor (TGF)-β1. RESULTS PD-1 and CTLA-4 were up-regulated on virus-specific CD4+ T cells from patients with chronic HCV infections. PD-1 expression was lower on influenza- than on HCV-specific CD4+ T cells from subjects with chronic HCV infection, whereas CTLA-4 was expressed at similar levels, independent of their specificity. CD305 and CD200R were up-regulated in HCV resolvers. Blockade of PD-L1/2, IL-10, and TGF-β1 increased expansion of CD4+ T cells in patients with chronic HCV, whereas inhibition of IL-10 and TGF-β1 was most effective in restoring HCV-specific production of interferon gamma, IL-2, and tumor necrosis factor α. CONCLUSIONS We characterized expression of inhibitory molecules on HCV-, influenza-, and EBV-specific CD4+ T cells and the effects of in vitro blockade on CD4+ T-cell expansion and cytokine production. Inhibition of PD-1, IL-10, and TGF-β1 is most efficient in restoration of HCV-specific CD4+ T cells.


Genome Research | 2014

Widespread context dependency of microRNA-mediated regulation

Florian Erhard; Jürgen Haas; Diana Lieber; Georg Malterer; Lukasz Jaskiewicz; Mihaela Zavolan; Lars Dölken; Ralf Zimmer

Gene expression is regulated in a context-dependent, cell-type-specific manner. Condition-specific transcription is dependent on the presence of transcription factors (TFs) that can activate or inhibit its target genes (global context). Additional factors, such as chromatin structure, histone, or DNA modifications, also influence the activity of individual target genes (individual context). The role of the global and individual context for post-transcriptional regulation has not systematically been investigated on a large scale and is poorly understood. Here we show that global and individual context dependency is a pervasive feature of microRNA-mediated regulation. Our comprehensive and highly consistent data set from several high-throughput technologies (PAR-CLIP, RIP-chip, 4sU-tagging, and SILAC) provides strong evidence that context-dependent microRNA target sites (CDTS) are as frequent and functionally relevant as constitutive target sites (CTS). Furthermore, we found the global context to be insufficient to explain the CDTS, and that flanking sequence motifs provide individual context that is an equally important factor. Our results demonstrate that, similar to TF-mediated regulation, global and individual context dependency are prevalent in microRNA-mediated gene regulation, implying a much more complex post-transcriptional regulatory network than is currently known. The necessary tools to unravel post-transcriptional regulations and mechanisms need to be much more involved, and much more data will be needed for particular cell types and cellular conditions in order to understand microRNA-mediated regulation and the context-dependent post-transcriptional regulatory network.

Collaboration


Dive into the Jürgen Haas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Dölken

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Alexander Schwarz

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Peter Ghazal

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Uetz

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge