Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen M. Plitzko is active.

Publication


Featured researches published by Jürgen M. Plitzko.


Nature | 2006

An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria.

André Scheffel; Manuela Gruska; Damien Faivre; Alexandros Linaroudis; Jürgen M. Plitzko; Dirk Schüler

Magnetotactic bacteria are widespread aquatic microorganisms that use unique intracellular organelles to navigate along the Earths magnetic field. These organelles, called magnetosomes, consist of membrane-enclosed magnetite crystals that are thought to help to direct bacterial swimming towards growth-favouring microoxic zones at the bottom of natural waters. Questions in the study of magnetosome formation include understanding the factors governing the size and redox-controlled synthesis of the nano-sized magnetosomes and their assembly into a regular chain in order to achieve the maximum possible magnetic moment, against the physical tendency of magnetosome agglomeration. A deeper understanding of these mechanisms is expected from studying the genes present in the identified chromosomal ‘magnetosome island’, for which the connection with magnetosome synthesis has become evident. Here we use gene deletion in Magnetospirillum gryphiswaldense to show that magnetosome alignment is coupled to the presence of the mamJ gene product. MamJ is an acidic protein associated with a novel filamentous structure, as revealed by fluorescence microscopy and cryo-electron tomography. We suggest a mechanism in which MamJ interacts with the magnetosome surface as well as with a cytoskeleton-like structure. According to our hypothesis, magnetosome architecture represents one of the highest structural levels achieved in prokaryotic cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure

Christian Hoffmann; Andrew Leis; Michael Niederweis; Jürgen M. Plitzko; Harald Engelhardt

The cell walls of mycobacteria form an exceptional permeability barrier, and they are essential for virulence. They contain extractable lipids and long-chain mycolic acids that are covalently linked to peptidoglycan via an arabinogalactan network. The lipids were thought to form an asymmetrical bilayer of considerable thickness, but this could never be proven directly by microscopy or other means. Cryo-electron tomography of unperturbed or detergent-treated cells of Mycobacterium smegmatis embedded in vitreous ice now reveals the native organization of the cell envelope and its delineation into several distinct layers. The 3D data and the investigation of ultrathin frozen-hydrated cryosections of M. smegmatis, Myobacterium bovis bacillus Calmette–Guérin, and Corynebacterium glutamicum identified the outermost layer as a morphologically symmetrical lipid bilayer. The structure of the mycobacterial outer membrane necessitates considerable revision of the current view of its architecture. Conceivable models are proposed and discussed. These results are crucial for the investigation and understanding of transport processes across the mycobacterial cell wall, and they are of particular medical relevance in the case of pathogenic mycobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Near-atomic resolution structural model of the yeast 26S proteasome

Florian Beck; Pia Unverdorben; Stefan Bohn; Andreas Schweitzer; Günter Pfeifer; Eri Sakata; Stephan Nickell; Jürgen M. Plitzko; Elizabeth Villa; Wolfgang Baumeister; Friedrich Förster

The 26S proteasome operates at the executive end of the ubiquitin-proteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Volta potential phase plate for in-focus phase contrast transmission electron microscopy

Radostin Danev; Bart Buijsse; Maryam Khoshouei; Jürgen M. Plitzko; Wolfgang Baumeister

Significance Biological electron cryomicroscopy is limited by the radiation sensitivity of the samples and the consequent need to minimize exposure to the beam. This, in turn, results in low-contrast images with a poor signal-to-noise ratio. The current practice to improve phase contrast by defocusing results in contrast transfer functions necessitating image restoration to provide interpretable data. Phase plates enable in-focus phase contrast, but the existing ones, including the thin film Zernike-type phase plate, suffer from severe limitations, such as a short usable life span, fringing artifacts, and problems in using them in automated data acquisition procedures. The Volta phase plate presented here solves those problems and has the potential to become a practical solution for in-focus phase contrast in transmission electron microscopy. We describe a phase plate for transmission electron microscopy taking advantage of a hitherto-unknown phenomenon, namely a beam-induced Volta potential on the surface of a continuous thin film. The Volta potential is negative, indicating that it is not caused by beam-induced electrostatic charging. The film must be heated to ∼200 °C to prevent contamination and enable the Volta potential effect. The phase shift is created “on the fly” by the central diffraction beam eliminating the need for precise phase plate alignment. Images acquired with the Volta phase plate (VPP) show higher contrast and unlike Zernike phase plate images no fringing artifacts. Following installation into the microscope, the VPP has an initial settling time of about a week after which the phase shift behavior becomes stable. The VPP has a long service life and has been used for more than 6 mo without noticeable degradation in performance. The mechanism underlying the VPP is the same as the one responsible for the degradation over time of the performance of thin-film Zernike phase plates, but in the VPP it is used in a constructive way. The exact physics and/or chemistry behind the process causing the Volta potential are not fully understood, but experimental evidence suggests that radiation-induced surface modification combined with a chemical equilibrium between the surface and residual gases in the vacuum play an important role.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography

Alexander Rigort; Felix J.B. Bäuerlein; Elizabeth Villa; Matthias Eibauer; Tim Laugks; Wolfgang Baumeister; Jürgen M. Plitzko

Cryoelectron tomography provides unprecedented insights into the macromolecular and supramolecular organization of cells in a close-to-living state. However because of the limited thickness range (< 0.5–1 μm) that is accessible with today’s intermediate voltage electron microscopes only small prokaryotic cells or peripheral regions of eukaryotic cells can be examined directly. Key to overcoming this limitation is the ability to prepare sufficiently thin samples. Cryosectioning can be used to prepare thin enough sections but suffers from severe artefacts, such as substantial compression. Here we describe a procedure, based upon focused ion beam (FIB) milling for the preparation of thin (200–500 nm) lamellae from vitrified cells grown on electron microscopy (EM) grids. The self-supporting lamellae are apparently free of distortions or other artefacts and open up large windows into the cell’s interior allowing tomographic studies to be performed on any chosen part of the cell. We illustrate the quality of sample preservation with a structure of the nuclear pore complex obtained from a single tomogram.


Science | 2016

Visualizing the molecular sociology at the HeLa cell nuclear periphery

Julia Mahamid; Stefan Pfeffer; Miroslava Schaffer; Elizabeth Villa; Radostin Danev; Luis Kuhn Cuellar; Friedrich Förster; Anthony A. Hyman; Jürgen M. Plitzko; Wolfgang Baumeister

Close-up view of the nuclear periphery Cell biologists would like to be able to visualize complexes inside cells at molecular resolution. Several limitations, however, have prevented the field from realizing this goal. The thickness of most cells precludes cryo-electron tomography, a technique which itself does not provide sufficient contrast. Mahamid et al. successfully combined recent advances on both fronts to analyze structures in situ at the periphery of the nucleus. Their images reveal features that inform our understanding of the native organization of nuclear pores and of the nuclear lamina. Science, this issue p. 969 Cryo–electron tomography reveals the molecular organization of the cell nucleus periphery in situ. The molecular organization of eukaryotic nuclear volumes remains largely unexplored. Here we combined recent developments in cryo–electron tomography (cryo-ET) to produce three-dimensional snapshots of the HeLa cell nuclear periphery. Subtomogram averaging and classification of ribosomes revealed the native structure and organization of the cytoplasmic translation machinery. Analysis of a large dynamic structure—the nuclear pore complex—revealed variations detectable at the level of individual complexes. Cryo-ET was used to visualize previously elusive structures, such as nucleosome chains and the filaments of the nuclear lamina, in situ. Elucidation of the lamina structure provides insight into its contribution to metazoan nuclear stiffness.


Journal of Structural Biology | 2010

Micromachining tools and correlative approaches for cellular cryo-electron tomography.

Alexander Rigort; Felix J.B. Bäuerlein; Andrew Leis; Manuela Gruska; Christian Hoffmann; Tim Laugks; Ulrike Böhm; Matthias Eibauer; Helmut Gnaegi; Wolfgang Baumeister; Jürgen M. Plitzko

A principal limitation of cryo-transmission electron microscopy performed on cells or tissues is the accessible specimen thickness. This is exacerbated in tomography applications, where the aspect ratio (and thus the apparent specimen thickness) changes considerably during specimen tilting. Cryo-ultramicrotomy is the most obvious way of dealing with this problem; however, frozen-hydrated sections suffer from potentially inconsistent compression that cannot be corrected with certainty, and furthermore, yields of sections that satisfy all of the conditions necessary for tomographic imaging are poor. An alternative approach that avoids mechanical deformations is the use of focused ion beam (FIB) instrumentation, where thinning of the frozen-hydrated specimen occurs through the process of sputtering with heavy ions, typically gallium. Here, we use correlative cryo-fluorescence microscopy to navigate large cellular volumes and to localize specific cellular targets. We show that the selected targets in frozen-hydrated specimens can be accessed directly by focused ion beam milling. We also introduce a novel cryo-planing procedure as a method that could facilitate thinning of large areas of vitreous ice prior to cryo-fluorescence, FIB thinning, and cryo-electron tomography.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Insights into the molecular architecture of the 26S proteasome.

Stephan Nickell; Florian Beck; Sjors H.W. Scheres; Andreas Korinek; Friedrich Förster; Keren Lasker; Oana Mihalache; Na Sun; Andrej Sali; Jürgen M. Plitzko; J.M. Carazo; Matthias Mann; Wolfgang Baumeister

Cryo-electron microscopy in conjunction with advanced image analysis was used to analyze the structure of the 26S proteasome and to elucidate its variable features. We have been able to outline the boundaries of the ATPase module in the “base” part of the regulatory complex that can vary in its position and orientation relative to the 20S core particle. This variation is consistent with the “wobbling” model that was previously proposed to explain the role of the regulatory complex in opening the gate in the α-rings of the core particle. In addition, a variable mass near the mouth of the ATPase ring has been identified as Rpn10, a multiubiquitin receptor, by correlating the electron microscopy data with quantitative mass spectrometry.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Deep Classification of a Large Cryo-Em Dataset Defines the Conformational Landscape of the 26S Proteasome.

Pia Unverdorben; Florian Beck; Paweł Śledź; Andreas Schweitzer; Günter Pfeifer; Jürgen M. Plitzko; Wolfgang Baumeister; Friedrich Förster

Significance The 26S proteasome is a multisubunit molecular machine for the targeted degradation of intracellular proteins. It has an essential role in the maintenance of protein homeostasis. During its functional cycle the proteasome undergoes large-scale conformational changes. For a detailed mechanistic understanding, an analysis of its conformational landscape is indispensable. Capitalizing on a very large dataset of more than 3 million individual particles and using a novel image-classification strategy, we have been able to deconvolute coexisting conformational states. This led to the discovery of conformation intermediates that provide deeper insights into the sequence of events following the initial binding of ubiquitylated substrates. The 26S proteasome is a 2.5 MDa molecular machine that executes the degradation of substrates of the ubiquitin–proteasome pathway. The molecular architecture of the 26S proteasome was recently established by cryo-EM approaches. For a detailed understanding of the sequence of events from the initial binding of polyubiquitylated substrates to the translocation into the proteolytic core complex, it is necessary to move beyond static structures and characterize the conformational landscape of the 26S proteasome. To this end we have subjected a large cryo-EM dataset acquired in the presence of ATP and ATP-γS to a deep classification procedure, which deconvolutes coexisting conformational states. Highly variable regions, such as the density assigned to the largest subunit, Rpn1, are now well resolved and rendered interpretable. Our analysis reveals the existence of three major conformations: in addition to the previously described ATP-hydrolyzing (ATPh) and ATP-γS conformations, an intermediate state has been found. Its AAA-ATPase module adopts essentially the same topology that is observed in the ATPh conformation, whereas the lid is more similar to the ATP-γS bound state. Based on the conformational ensemble of the 26S proteasome in solution, we propose a mechanistic model for substrate recognition, commitment, deubiquitylation, and translocation into the core particle.


Molecular Microbiology | 2010

Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense

Emanuel Katzmann; André Scheffel; Manuela Gruska; Jürgen M. Plitzko; Dirk Schüler

Magnetotactic bacteria synthesize magnetosomes, which are unique organelles consisting of membrane‐enclosed magnetite crystals. For magnetic orientation individual magnetosome particles are assembled into well‐organized chains. The actin‐like MamK and the acidic MamJ proteins were previously implicated in chain assembly. While MamK was suggested to form magnetosome‐associated cytoskeletal filaments, MamJ is assumed to attach the magnetosome vesicles to these structures. Although the deletion of either mamK in Magnetospirillum magneticum, or mamJ in Magnetospirillum gryphiswaldense affected chain formation, the previously observed phenotypes were not fully consistent, suggesting different mechanisms of magnetosome chain assembly in both organisms. Here we show that in M. gryphiswaldense MamK is not absolutely required for chain formation. Straight chains, albeit shorter, fragmented and ectopic, were still formed in a mamK deletion mutant, although magnetosome filaments were absent as shown by cryo‐electron tomography. Loss of MamK also resulted in reduced numbers of magnetite crystals and magnetosome vesicles and led to the mislocalization of MamJ. In addition, extensive analysis of wild type and mutant cells revealed previously unidentified ultrastructural characteristics in M. gryphiswaldense. Our results suggest that, despite of their functional equivalence, loss of MamK proteins in different bacteria may result in distinct phenotypes, which might be due to a species‐specific genetic context.

Collaboration


Dive into the Jürgen M. Plitzko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge