Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Orasche is active.

Publication


Featured researches published by Jürgen Orasche.


Clinical Science | 2014

The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

Gerrit John; Katrin Kohse; Jürgen Orasche; Ahmed Reda; Jürgen Schnelle-Kreis; Ralf Zimmermann; Otmar Schmid; Oliver Eickelberg; Ali Önder Yildirim

COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby determining the outcome of the studies.


Environmental Science & Technology | 2014

Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions.

Olli Sippula; Benjamin Stengel; Martin Sklorz; Thorsten Streibel; R. Rabe; Jürgen Orasche; Jutta Lintelmann; Bernhard Michalke; Gülcin Abbaszade; C. Radischat; Thomas Gröger; Jürgen Schnelle-Kreis; Horst Harndorf; Ralf Zimmermann

The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation.


PLOS ONE | 2015

Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions

Sebastian Oeder; Tamara Kanashova; Olli Sippula; Sean C. Sapcariu; Thorsten Streibel; Jose M. Arteaga-Salas; Johannes Passig; M. Dilger; Hanns-Rudolf Paur; C. Schlager; S. Mülhopt; S. Diabate; Carsten Weiss; Benjamin Stengel; R. Rabe; Horst Harndorf; Tiina Torvela; Jorma Jokiniemi; Maija-Riitta Hirvonen; Carsten B. Schmidt-Weber; Claudia Traidl-Hoffmann; Kelly Ann Berube; Anna Julia Wlodarczyk; Zoe Cariad Prytherch; Bernhard Michalke; T. Krebs; André S. H. Prévôt; Michael Kelbg; Josef Tiggesbäumker; Erwin Karg

Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.


Environmental Toxicology | 2017

Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells

Stefanie Kasurinen; Pasi I. Jalava; Mikko S. Happo; Olli Sippula; Oskari Uski; Hanna Koponen; Jürgen Orasche; Ralf Zimmermann; Jorma Jokiniemi; Maija-Riitta Hirvonen

According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion.


Science of The Total Environment | 2018

Organic speciation of ambient quasi-ultrafine particulate matter (PM0.36) in Augsburg, Germany: Seasonal variability and source apportionment

Fengxia Li; Jürgen Schnelle-Kreis; Josef Cyrys; Erwin Karg; Jianwei Gu; Gülcin Abbaszade; Jürgen Orasche; Annette Peters; Ralf Zimmermann

To investigate the organic composition and their sources of very fine atmospheric particulate matter (PM), size-segregated PM was sampled using rotating drum impactor (RDI) in series with a sequential filter sampler in Augsburg, Germany, from April 2014 to February 2015. Organic speciation analysis and organic carbon/elemental carbon (OC/EC) analysis was performed for the smallest size fraction PM0.36 (PM<360nm). Different OC fractions were determined by thermal optical EC/OC analyzer, and OC2, OC3 and OC4 refer to OC fractions that were derived at 280, 480 and 580°C, respectively. Positive matrix factorization (PMF) analysis was applied for source apportionment study. PMF resolved 5 sources including biogenic dominated secondary organic aerosol (bioSOA), isoprene dominated SOA (isoSOA), traffic, biomass burning (BB) and biomass burning originated SOA (bbSOA). On annual average, PMF results indicate the largest contribution of biogenic originated SOA (bioSOA plus isoSOA) to OC, followed by traffic and then BB related sources (BB plus bbSOA). Traffic was found to be associated with the smallest particles; whereas bioSOA and BB are associated with larger particles. Secondary organic marker compounds from biogenic precursors, OC2, OC3 and bioSOA, isoSOA source factors show summer maximum. Polycyclic aromatic hydrocarbons (PAHs), biomass burning markers, OC4 and BB, bbSOA source factors show winter maximum. Hopanes and the traffic source factor show little seasonal variation. Summer peaks of OC3 and OC2 are well modeled by PMF and are attributed mainly to biogenic SOA. OC4 was generally poorly modeled due to lack of characteristic low volatile markers. Summer maxima of biogenic SOA related compounds and source factors are positively correlated with temperature, global radiation, O3 concentration and mixing layer height (MLH). Winter maxima of BB related compounds and source factors are negatively correlated with temperature and MLH; whereas positively correlated with NO2 level.


Environment International | 2016

Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

Congrong He; Branka Miljevic; Leigh R. Crilley; Nicholas C. Surawski; Jennifer Bartsch; Farhad Salimi; Erik Uhde; Jürgen Schnelle-Kreis; Jürgen Orasche; Zoran Ristovski; Godwin A. Ayoko; Ralf Zimmermann; Lidia Morawska

Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning events, especially prescribed burning, on urban air quality. The current results provide a solid platform for more detailed health and modelling investigations in the future.


Environmental Pollution | 2014

Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach

Leigh R. Crilley; Raeed M. Qadir; Godwin A. Ayoko; Jürgen Schnelle-Kreis; Gülcin Abbaszade; Jürgen Orasche; Ralf Zimmermann; Lidia Morawska

Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of childrens exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.


Environmental Science & Technology | 2016

Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion

Benedikt A. Weggler; Saray Ly-Verdú; Maximilian K. Jennerwein; Olli Sippula; Ahmed Reda; Jürgen Orasche; Thomas Gröger; Jorma Jokiniemi; Ralf Zimmermann

Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.


Archive | 2013

Emissions of Organic and Inorganic Pollutants During the Combustion of Wood, Straw and Biogas

Torben Seidel; Jürgen Orasche; Hans Ruppert; Jürgen Schnelle-Kreis; Hans Hartmann

In Europe, wood combustion in stoves and boilers is widely applied for residential heating. In Germany, approximately 15 million of 40 million households own small-scale furnaces, which deliver 7 % of Germany’s heat consumption. Using state-of-the-art small-scale combustion systems, we investigated how the air quality changes due to the emissions of harmful elements and organic pollutants during the combustion of wood and straw.


Science of The Total Environment | 2018

Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances

Hendryk Czech; Toni Miersch; Jürgen Orasche; Gülcin Abbaszade; Olli Sippula; Jarkko Tissari; Bernhard Michalke; Jürgen Schnelle-Kreis; Thorsten Streibel; Jorma Jokiniemi; Ralf Zimmermann

Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe.

Collaboration


Dive into the Jürgen Orasche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olli Sippula

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorma Jokiniemi

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Hanns-Rudolf Paur

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Dilger

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Diabate

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge