Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Rödel is active.

Publication


Featured researches published by Jürgen Rödel.


Applied Physics Letters | 2007

Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system

Shan-Tao Zhang; Alain Brice Kounga; Emil Aulbach; Helmut Ehrenberg; Jürgen Rödel

Piezoelectric actuators convert electrical into mechanical energy and are implemented for many large-scale applications such as piezoinjectors and ink jet printers. The performance of these devices is governed by the electric-field-induced strain. Here, the authors describe the development of a class of lead-free (0.94−x)Bi0.5Na0.5TiO3–0.06BaTiO3–xK0.5Na0.5NbO3 ceramics. These can deliver a giant strain (0.45%) under both unipolar and bipolar field loadings, which is even higher than the strain obtained with established ferroelectric Pb(Zr,Ti)O3 ceramics and is comparable to strains obtained in Pb-based antiferroelectrics.Piezoelectric actuators convert electrical into mechanical energy and are implemented for many large-scale applications such as piezoinjectors and ink jet printers. The performance of these devices is governed by the electric-field-induced strain. Here, the authors describe the development of a class of lead-free (0.94-x)Bi0.5Na0.5TiO3-0.06BaTiO(3)-xK(0.5)Na(0.5)NbO(3) ceramics. These can deliver a giant strain (0.45%) under both unipolar and bipolar field loadings, which is even higher than the strain obtained with established ferroelectric Pb(Zr,Ti)O-3 ceramics and is comparable to strains obtained in Pb-based antiferroelectrics.


Journal of Electroceramics | 2012

Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective

Wook Jo; Robert Dittmer; Matias Acosta; Jiadong Zang; Claudia Groh; Eva Sapper; Ke Wang; Jürgen Rödel

In response to the current environmental regulations against the use of lead in daily electronic devices, a number of investigations have been performed worldwide in search for alternative piezoelectric ceramics that can replace the market-dominating lead-based ones, representatively Pb(ZrxTi1-x)O3 (PZT)-based solid solutions. Selected systems of potential importance such as chemically modified and/or crystallographically textured (K, Na)NbO3 and (Bi1/2Na1/2)TiO3-based solid solutions have been developed. Nevertheless, only few achievements have so far been introduced to the marketplace. A recent discovery has greatly extended our tool box for material design by furnishing (Bi1/2Na1/2)TiO3-based ceramics with a reversible phase transition between an ergodic relaxor state and a ferroelectric with the application of electric field. This paired the piezoelectric effect with a strain-generating phase transition and extended opportunities for actuator applications in a completely new manner. In this contribution, we will present the status and perspectives of this new class of actuator ceramics, aiming at covering a wide spectrum of topics, i.e., from fundamentals to practice.


Journal of Applied Physics | 2011

On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3

Wook Jo; Silke Schaab; Eva Sapper; Ljubomira Ana Schmitt; Hans-Joachim Kleebe; Andrew J. Bell; Jürgen Rödel

Temperature-dependent dielectric permittivity of 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 (BNT-6BT) lead-free piezoceramics was studied to disentangle the existing unclear issues over the crystallographic aspects and phase stability of the system. Application of existing phenomenological relaxor models enabled the relaxor contribution to the entire dielectric permittivity spectra to be deconvoluted. The deconvoluted data in comparison with the temperature-dependent dielectric permittivity of a classical perovskite relaxor, La-modified lead zirconate titanate, clearly suggest that BNT-6BT belongs to the same relaxor category, which was also confirmed by a comparative study on the temperature- dependent polarization hysteresis loops of both materials. Based on these results, we propose that the low-temperature dielectric anomaly does not involve any phase transition such as ferroelectric- to-antiferroelectric. Supported by transmission electron microscopy and X-ray diffraction experiments at ambient temperature, we ...


Journal of Applied Physics | 2009

Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics

Wook Jo; Torsten Granzow; Emil Aulbach; Jürgen Rödel; Dragan Damjanovic

The mechanism of the giant unipolar strain recently observed in a lead-free piezoceramic, 0.92(Bi0.5Na0.5)TiO3−0.06BaTiO3−0.02(K0.5Na0.5)NbO3 [S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, Appl. Phys. Lett. 91, 112906 (2007) was investigated. The validity of the previously proposed mechanism that the high strain comes both from a significant volume change during the field-induced phase transition, from an antiferroelectric to a ferroelectric phase and the domain contribution from the induced ferroelectric phase was examined. Monitoring the volume changes from the simultaneously measured longitudinal and transverse strains on disk-shaped samples showed that the phase transition in this specific material does not involve any notable volume change, which indicates that there is little contribution from a volume change due to the phase transition to the total strain response. Temperature dependent hysteresis measurements on unpoled samples of a nearby ferroelectric composition, 0.93(Bi0.5...


Applied Physics Letters | 2009

Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3–7% BaTiO3 piezoelectric ceramic

John E. Daniels; Wook Jo; Jürgen Rödel; Jacob L. Jones

The electric-field-induced strain in 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 polycrystalline ceramic is shown to be the result of an electric-field-induced phase transformation from a pseudocubic to tetragonal symmetry. High-energy x-ray diffraction is used to illustrate the microstructural nature of the transformation. A combination of induced unit cell volumetric changes, domain texture, and anisotropic lattice strains are responsible for the observed macroscopic strain. This strain mechanism is not analogous to the high electric-field-induced strains observed in lead-based morphotropic phase boundary systems. Thus, systems which appear cubic under zero field should not be excluded from the search for lead-free piezoelectric compositions.


Journal of Applied Physics | 2008

Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties

Shan-Tao Zhang; Alain Brice Kounga; Emil Aulbach; Torsten Granzow; Wook Jo; Hans-Joachim Kleebe; Jürgen Rödel

Lead-free piezoelectric ceramics, 1� xyBi 0.5 Na 0.5 TiO 3 -xBaTiO 3 -yK 0.5 Na 0.5 NbO 3 0.05x 0.07 and 0.01y 0.03, have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and piezoelectric properties of these ceramics were studied. Based on the measured properties, the ceramics were categorized into two groups: group I compositions having dominant ferroelectric order and group II compositions displaying mixed ferroelectric and antiferroelectric properties at room temperature. A composition from group II near the boundary between these two groups exhibited a strain as large as 0.45% at an electric field of 8k V/ mm. Polarization in this composition was not stable in that the piezoelectric coefficient d33 at zero electric field was only about 30 pm/ V. The converse piezoelectric response becomes weaker when the composition deviated from the boundary between the groups toward either the ferroelectric or antiferroelectric compositions. These results were rationalized based on a field induced antiferroelectric-ferroelectric phase transition.


Applied Physics Letters | 2008

Morphotropic phase boundary in (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 lead-free piezoceramics

Alain Brice Kounga; Shan-Tao Zhang; Wook Jo; Torsten Granzow; Jürgen Rödel

The electromechanical behavior of (1−x)Bi0.5Na0.5TiO3–xK0.5Na0.5NbO3 (BNT-KNN) lead free piezoelectric ceramics is investigated for 0⩽x⩽0.12 to gain insight into the antiferroelectric-ferroelectric (AFE-FE) phase transition on the basis of the giant strain recently observed in BNT-based systems. At x≈0.07, a morphotropic phase boundary (MPB) between a rhombohedral FE phase and a tetragonal AFE phase is found. While the piezoelectric coefficient is largest at this MPB, the total strain further increases with increasing KNN content, indicating the field-induced AFE-FE transition as the main reason for the large strain.


Journal of Applied Physics | 2008

Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties

Shan-Tao Zhang; Alain Brice Kounga; Emil Aulbach; Wook Jo; Torsten Granzow; Helmut Ehrenberg; Jürgen Rödel

The temperature dependence of the dielectric and ferroelectric properties of lead-free piezoceramics of the composition (1−x−y)Bi0.5Na0.5TiO3–xBaTiO3–yK0.5Na0.5NbO3 (0.05⩽x⩽0.07, 0.01⩽y⩽0.03) was investigated. Measurements of the polarization and strain hystereses indicate a transition to predominantly antiferroelectric order when heating from room temperature to 150°C, while for 150<T<200°C both remnant polarization and coercive field increase. Frequency-dependent susceptibility measurements show that the transition is relaxorlike. For some samples, the transition temperature Td is high enough to allow mostly ferroelectric ordering at room temperature. These samples show a drastic increase of the usable strain under an external electric field just after the transition into the antiferroelectric state at high temperatures. For the other samples, Td is so low that they display significant antiferroelectric ordering already at room temperature. In these samples, the usable strain is relatively stable over a...


Journal of Applied Physics | 2011

Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics

Eva-Maria Anton; Wook Jo; Dragan Damjanovic; Jürgen Rödel

The depolarization temperature T-d of piezoelectric materials is an important figure of merit for their application at elevated temperatures. Until now, there are several methods proposed in the literature to determine the depolarization temperature of piezoelectrics, which are based on different physical origins. Their validity and inter-correlation have not been clearly manifested. This paper applies the definition of depolarization temperature as the temperature of the steepest decrease of remanent polarization and evaluates currently used methods, both in terms of this definition and practical applicability. For the investigations, the lead-free piezoceramics (1-y)(Bi1/2Na1/2TiO3-xBi(1/2)K(1/2)TiO(3))-yK(0.5)Na(0.5)NbO(3) in a wide compositional range were chosen. Results were then compared to those for BaTiO3 and a commercial Pb(Zr,Ti)O-3-based material as references. Thermally stimulated depolarization current and in situ temperature-dependent piezoelectric coefficient d(33) are recommended to determine T-d according to the proposed definition. Methods based on inflection point of the real part of permittivity or the peak in dielectric loss give consistently higher temperature values


Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 1995

Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks

Helge Prielipp; Mathias Knechtel; Nils Claussen; S.K. Streiffer; H. Müllejans; M. Rühle; Jürgen Rödel

The mechanical properties of metal reinforced ceramics, especially Al/Al2O3 composites with interpenetrating networks, are described. Key parameters to tailor the characteristics of these materials are the ligament diameter and volume fraction of ductile reinforcement. Fracture strength and fracture toughness data are given as a function of both variables and are compared with the corresponding values for the porous preforms. A simple model accounts for the influence of metal volume and metal ligament diameter on the plateau toughness of the composites. The increase in fracture strength from the porous preform to the composite is found to be much larger than the gain which can be predicted from the increase in fracture toughness alone. A discussion of fracture strength in these composites therefore must include at least two issues, crack propagation through the matrix as well as crack initiation at metal filled pores.

Collaboration


Dive into the Jürgen Rödel's collaboration.

Top Co-Authors

Avatar

Wook Jo

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Doru C. Lupascu

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Torsten Granzow

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Emil Aulbach

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Kyle G. Webber

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Mark Hoffman

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Hans-Joachim Kleebe

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar

Nikola Novak

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Dittmer

Technische Universität Darmstadt

View shared research outputs
Researchain Logo
Decentralizing Knowledge