Jürgen Schünemann
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jürgen Schünemann.
Journal of Molecular Biology | 2003
Anton Karabinos; Jürgen Schünemann; Michael Meyer; Ueli Aebi; Klaus Weber
The lamins of the tunicate Ciona intestinalis and the nematode Caenorhabditis elegans show unusual sequence features when compared to the more than 35 metazoan lamin sequences currently known. We therefore analyzed the in vitro assembly of these two lamins by electron microscopy using chicken lamin B2 as a control. While lamin dimers usually appear as a rod carrying two globules at one end, these globules are absent from Ciona lamin, which lacks the central 105-residue region of the tail domain. The deletion of 14 residues or two heptads from the coiled coil rod domain of the single C.elegans lamin results in a 1.5-nm shortening of the dimer rod. Similarly, the paracrystals assembled from the C.elegans lamin exhibit a 3.1-nm reduction of the true axial repeat compared to that of chicken lamin B2 paracrystals. We speculate that the banding pattern in the C.elegans lamin paracrystals arises from a relative stagger between dimers and/or a positioning of the globular tail domain relative to the central rod that is distinct from that observed in chicken lamin B2 paracrystals. Here we show that a nuclear lamin can assemble in vitro into 10-nm intermediate filaments (IFs). C.elegans lamin in low ionic strength Tris-buffers at a pH of 7.2-7.4 provides a stable population of lamin IFs. Some implications of this filament formation are discussed.
European Journal of Cell Biology | 2004
Anton Karabinos; Jürgen Schünemann; Klaus Weber
Intestinal cells of C. elegans show an unexpectedly high complexity of cytoplasmic intermediate filament (IF) proteins. Of the 11 known IF genes six are coexpressed in the intestine, i.e. genes B2, C1, C2, D1, D2, and E1. Specific antibodies and GFP-promoter constructs show that genes B2, D1, D2, and E1 are exclusively expressed in intestinal cells. Using RNA interference (RNAi) by microinjection at 25 degrees C rather than at 20 degrees C we observe for the first time lethal phenotypes for C1 and D2. RNAi at 25 degrees C also shows that the known A1 phenotype occurs already in the late embryo after microinjection and is also observed by feeding which was not the case at 20 degrees C. Thus, RNAi at 25 degrees C may also be useful for the future analysis of other nematode genes. Finally, we show that triple RNAi at 20 degrees C is necessary for the combinations B2, D1, E1 and B2, D1, D2 to obtain a phenotype. Together with earlier results on genes A1, A2, A3, B1, and C2 RNAi phenotypes are now established for all 11IF genes except for the A4 gene. RNAi phenotypes except for A2 (early larval lethality) and C2 (adult phenotype) relate to the late embryo. We conclude that in C. elegans cytoplasmic IFs are required for tissue integrity including late embryonic stages. This is in strong contrast to the mouse, where ablation of IF genes apparently does not affect the embryo proper.
European Journal of Cell Biology | 2012
Anton Karabinos; Jürgen Schünemann; David A.D. Parry
Previously, we cloned two Branchiostoma IF proteins A3 and B2 and demonstrated that both can form heteropolymeric IF based on a coiled coil dimer consisting of one B2 and one A3 polypeptide. In this study we continued in the characterisation of the B2/A3 heterodimer by searching for the sequences that play an important role in the triggering of the B2/A3 heterodimer. Using a series of deletion and chimeric B2, A3 and B1 constructs and the overlay assay as a tool, we were able to identify a part of the B2 sequence (segment 1A, linker L1 and the N-terminal part of segment 1B) which retains the ability of the full length protein B2 to specifically recognize A3 in blot overlays. Moreover, inspection of this A3-competent B2 fragment identified a short sequence in segment 1B which shares with the currently known trigger-like motif of cortexillin and other coiled coil proteins potential to form multiple inter-chain ionic interactions. Thus, a common and essential feature of trigger sequences with different primary structures found so far in IF and other coiled coil proteins seems to be their ability to form multiple inter-chain ionic interactions which brings the chains close to one another and allows coiled coil formation to propagate accordingly.
Cytoskeleton | 2017
Anton Karabinos; Jürgen Schünemann; David A.D. Parry
The dimerisation properties of six intestine‐expressed intermediate filament (IF) proteins (B2, C1, C2, D1, D2, E1) were analysed in blot overlay assay on membranes containing all of the eleven recombinant C. elegans IF proteins (A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, and E1). The interactions detected in the blot assays exclusively comprise intestine‐expressed IF proteins and the protein A4, which is found in the dauer larva intestine. About 86% of these interactions are heterotypic, while the remaining interactions relate to C1, C2, and D2 homodimers. These multiple modes of interaction were also supported by calculations of the numbers of possible interchain ionic interactions derived from the individual rod sequences. The results predict that the six B2, C1, C2, D1, D2, and E1 IF proteins are able to form as many as eleven different heteropolymeric and three homopolymeric IFs in the C. elegans intestine. This simple model of the intestinal IF meshwork enables us to speculate that our previously reported triple RNAi worms arrested or decreased their growth because of feeding reduction due to morphological defects of the mechanically compromised intestine.
FEBS Journal | 1992
Norbert Geisler; Jürgen Schünemann; Klaus Weber
Journal of Molecular Biology | 1998
Norbert Geisler; Jürgen Schünemann; Klaus Weber; Markus Häner; Ueli Aebi
Journal of Molecular Biology | 2003
Anton Karabinos; Ekkehard Schulze; Jürgen Schünemann; David A.D. Parry; Klaus Weber
Journal of Structural Biology | 1993
Norbert Geisler; Thomas Heimburg; Jürgen Schünemann; Klaus Weber
Journal of Molecular Biology | 2002
Anton Karabinos; Jürgen Schünemann; David A.D. Parry; Klaus Weber
Cell | 2018
Steffen Frey; Renate Rees; Jürgen Schünemann; Sheung Chun Ng; Kevser Gencalp Fünfgeld; Trevor Huyton; Dirk Görlich