Jürgen Spilker
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jürgen Spilker.
Manuscripta Mathematica | 1980
Adolf Hildebrand; Jürgen Spilker
Let f be an additive number-theoretical function and q≥1. We give necessary and sufficient conditions for f to satisfy. By means of this characterization we show that f is if and only if the above condition is satisfied and f has a mean value; in this case the Ramanujan expansion of f converges pointwise to f.
Archiv der Mathematik | 1980
Jürgen Spilker
Using a functional analytic idea, I will show that every bounded arithmetic function possesses a Ramanujan expansion which is pointwise absolutely convergent.
Monatshefte für Mathematik | 1972
Jürgen Spilker
ZusammenfassungU. Christian hat in [1] eine notwendige und hinreichende Bedingung an eine reelle symplektische Matrix dafür aufgestellt, daß der zugeordnete Homöomorphismus der Siegelschen Halbebene einen Fixpunkt besitzt. Sein Beweis benutzt entscheidend die Reduktionstheorie symplektischer Matrizen. Hier wird ein einfacher analytisch-geometrischer Beweis für dieses Kriterium dargestellt. Er beruht auf dem Fixpunktsatz von Schauder und einer Art Konvexitätseigenschaft symplektischer Kugeln.
Analysis | 1983
Wolfgang Schwarz; Jürgen Spilker
Denote by j4 q the vector space of B q-almostperiodic arithmetical functions. H. Daboussi £2 J , £jJ and P.D.T.A. Elliott 118], [l<3 characterized the set of multiplicative functions in jl^ with mean-value M(f) £ O by a statement concerning the convergence of certain series extended over the values f(p^) of f at prime-powers ( see (1.2^), (1.2g) and (1.2^) The authors give a simpler proof for the implication: If f £ ~4r ^ (q i 1) is multiplicative with mean-value M(f) φ O, then the series mentioned above are convergent. The proof consists in reducing the assertion to the special case q = 2, for which a simple proof is available by Daboussi Delange [5J ( see also [2^3 ) . AMS classification: Ιο Η 45 , lo Κ 35 .
Manuscripta Mathematica | 1975
Jürgen Wolfart; Jürgen Spilker
We generalize a result of Rankin [1]: Let R be a p — adic valuation ring or one of its factor rings and let G be GL2(R) or SL2(R). Then for M∈ M2(R), GM:={s∈G| trace MS=O} is a group iff trace M=0 and det M satisfies a simple condition (det M=O in most cases). We give similar conditions for several homogeneous linear equations defining subgroups of G.
Elemente Der Mathematik | 2018
Carsten Elsner; Jürgen Spilker
Here the integers ni are the coefficients of the p-adic representation of n. E. Lucas and later authors applied this concept to binomial coefficients. Recently, H. Zhong and T. Cai proved a necessary and sufficient condition for the Lucas property modulo p involving the sequences F (an + b), where F (n) is the Fibonacci sequence and a, b are two fixed positive integers. In this note two necessary and sufficient conditions for the Lucas property modulo p are proven, which are applicable to all functions f(n) = g(an+b), when g(n) satisfies a linear recurrence formula of order two. This generalizes the result of H. Zhong and T. Cai. We extend our result to Carmichael numbers p. An application to the difference of exponential functions is presented.
Acta Mathematica Hungarica | 2002
Jan-Christoph Puchta; Jürgen Spilker
AbstractTwo results on composed functions
Analysis | 1986
Wolfgang Schwarz; Jürgen Spilker
Archive | 1994
Wolfgang Schwarz; Jürgen Spilker
f([g{\text{(}}n{\text{)])}}
Archive | 1974
Wolfgang Schwarz; Jürgen Spilker