Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jürgen Spilker is active.

Publication


Featured researches published by Jürgen Spilker.


Manuscripta Mathematica | 1980

Charakterisierung der additiven, fast-geraden Funktionen

Adolf Hildebrand; Jürgen Spilker

Let f be an additive number-theoretical function and q≥1. We give necessary and sufficient conditions for f to satisfy. By means of this characterization we show that f is if and only if the above condition is satisfied and f has a mean value; in this case the Ramanujan expansion of f converges pointwise to f.


Archiv der Mathematik | 1980

Ramanujan expansions of bounded arithmetic functions

Jürgen Spilker

Using a functional analytic idea, I will show that every bounded arithmetic function possesses a Ramanujan expansion which is pointwise absolutely convergent.


Monatshefte für Mathematik | 1972

Elliptische Fixpunkte symplektischer Matrizen

Jürgen Spilker

ZusammenfassungU. Christian hat in [1] eine notwendige und hinreichende Bedingung an eine reelle symplektische Matrix dafür aufgestellt, daß der zugeordnete Homöomorphismus der Siegelschen Halbebene einen Fixpunkt besitzt. Sein Beweis benutzt entscheidend die Reduktionstheorie symplektischer Matrizen. Hier wird ein einfacher analytisch-geometrischer Beweis für dieses Kriterium dargestellt. Er beruht auf dem Fixpunktsatz von Schauder und einer Art Konvexitätseigenschaft symplektischer Kugeln.


Analysis | 1983

Eine bemerkung zur charakterisierung der fast-periodischen multipliκατιven zahlentheoretischen funktionen mit Von Null verschiedenem mittelwert

Wolfgang Schwarz; Jürgen Spilker

Denote by j4 q the vector space of B q-almostperiodic arithmetical functions. H. Daboussi £2 J , £jJ and P.D.T.A. Elliott 118], [l<3 characterized the set of multiplicative functions in jl^ with mean-value M(f) £ O by a statement concerning the convergence of certain series extended over the values f(p^) of f at prime-powers ( see (1.2^), (1.2g) and (1.2^) The authors give a simpler proof for the implication: If f £ ~4r ^ (q i 1) is multiplicative with mean-value M(f) φ O, then the series mentioned above are convergent. The proof consists in reducing the assertion to the special case q = 2, for which a simple proof is available by Daboussi Delange [5J ( see also [2^3 ) . AMS classification: Ιο Η 45 , lo Κ 35 .


Manuscripta Mathematica | 1975

Untergruppen der GL2, welche durch homogene lineare Kongruenzen definiert sind

Jürgen Wolfart; Jürgen Spilker

We generalize a result of Rankin [1]: Let R be a p — adic valuation ring or one of its factor rings and let G be GL2(R) or SL2(R). Then for M∈ M2(R), GM:={s∈G| trace MS=O} is a group iff trace M=0 and det M satisfies a simple condition (det M=O in most cases). We give similar conditions for several homogeneous linear equations defining subgroups of G.


Elemente Der Mathematik | 2018

The Lucas property for linear recurrences of second order

Carsten Elsner; Jürgen Spilker

Here the integers ni are the coefficients of the p-adic representation of n. E. Lucas and later authors applied this concept to binomial coefficients. Recently, H. Zhong and T. Cai proved a necessary and sufficient condition for the Lucas property modulo p involving the sequences F (an + b), where F (n) is the Fibonacci sequence and a, b are two fixed positive integers. In this note two necessary and sufficient conditions for the Lucas property modulo p are proven, which are applicable to all functions f(n) = g(an+b), when g(n) satisfies a linear recurrence formula of order two. This generalizes the result of H. Zhong and T. Cai. We extend our result to Carmichael numbers p. An application to the difference of exponential functions is presented.


Acta Mathematica Hungarica | 2002

Arithmetical Functions of the Form f([g(n)])

Jan-Christoph Puchta; Jürgen Spilker

AbstractTwo results on composed functions


Analysis | 1986

A variant of proof of daboussi's theorem on the characterization of multiplicative functions with non-void fourier-Bohr-spectrum

Wolfgang Schwarz; Jürgen Spilker


Archive | 1994

Arithmetical functions : an introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties

Wolfgang Schwarz; Jürgen Spilker

f([g{\text{(}}n{\text{)])}}


Archive | 1974

Mean values and Ramanujan expansions of almost even arithmetical functions

Wolfgang Schwarz; Jürgen Spilker

Collaboration


Dive into the Jürgen Spilker's collaboration.

Top Co-Authors

Avatar

Wolfgang Schwarz

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Wolfart

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge