Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juris Rumaks is active.

Publication


Featured researches published by Juris Rumaks.


Journal of Molecular Neuroscience | 2008

The Evolutionary History and Tissue Mapping of Amino Acid Transporters Belonging to Solute Carrier Families SLC32, SLC36, and SLC38

Björn Sundberg; Elin Wååg; Josefin A. Jacobsson; Olga Stephansson; Juris Rumaks; Simons Svirskis; Johan Alsiö; Erika Roman; Ted Ebendal; Vija Kluša; Robert Fredriksson

Members of the solute carrier families (SLC) 32, 36, and 38, together also designated the β-group of SLCs, are known to transport neutral amino acids. In this paper, we show that these three families were present before the split of the animal lineage and that they are likely to share a common decent. We also show that the APF transporters found in plants are most likely homologous to the mammalian β-group, suggesting that this type of transporters arouse early in the evolution of eukaryotes. We performed detailed tissue expression analysis of all the members of the β-group in rat and found several examples of highly specific expression patterns, with SLC38A7 being exclusively found in liver, SLC38A5 in blood, and SLC38A4 in muscle and liver. Moreover, we found that SLC38A10 is expressed in several endocrine organs. We also found that SLC38A1 is highly up regulated in the cortex from rats treated with diazepam and that SLC38A2 is significantly down regulated in the same tissue. In addition, we performed a detailed expression analysis of SLC38A1 and SLC38A6 in mouse brain using in situ hybridization, which showed that both these transporters are widely expressed in the brain.


Pharmacology, Biochemistry and Behavior | 2008

Betulin binds to γ-aminobutyric acid receptors and exerts anticonvulsant action in mice

Ruta Muceniece; Kristine Saleniece; Juris Rumaks; Liga Krigere; Zane Dzirkale; Rudolfs Mezhapuke; Olga Zharkova; Vija Klusa

The lupane type pentacyclic triterpenes: lupeol, betulin, and betulinic acid are widely distributed natural compounds. Recently, pharmaceutical compositions from plant extracts (family Marcgraviaceae) containing betulinic acid, have been patented as anxiolytic remedies. To extend our knowledge of the CNS effects of the triterpenes, we suggest here that the chemically related lupeol, betulin and betulinic acid may interact with the brain neurotransmitter gamma-aminobutyric acid (GABA) receptors in vitro and in vivo. Using radioligand receptor-binding assay, we showed that only betulin bound to the GABA(A)-receptor sites in mice brain in vitro and antagonised the GABA(A)-receptor antagonist bicuculline-induced seizures in mice after intracisternal and intraperitoneal administration. Neither betulinic acid nor lupeol bound to GABA(A) receptor nor did they inhibit bicuculline-induced seizures in vivo. These findings demonstrate for the first time the CNS effects of betulin in vivo, and they also show distinct GABA(A)-receptor-related properties of lupane type triterpenes. These findings may open new avenues in understanding the central effects of betulin, and they also indicate possibilities for novel drug design on the basis of betulin structure.


Neuroscience Letters | 2010

Neuroprotective properties of mildronate, a mitochondria-targeted small molecule.

Jolanta Pupure; Sergejs Isajevs; Elina Skapare; Juris Rumaks; Simons Svirskis; Darja Svirina; Ivars Kalvinsh; Vija Klusa

Mildronate, a representative of the aza-butyrobetaine class of drugs with proven cardioprotective efficacy, was recently found to prevent dysfunction of complex I in rat liver mitochondria. The present study demonstrates that mildronate also acts as a neuroprotective agent. In a mouse model of azidothymidine (anti-HIV drug) neurotoxicity, mildronate reduced the azidothymidine-induced alterations in mouse brain tissue: it normalized the increase in caspase-3, cellular apoptosis susceptibility protein (CAS) and iNOS expression assessed by quantitative and semi-quantitative analysis. Mildronate also normalized the changes in cytochrome c oxidase (COX) expression, reduced the expression of glial fibrillary acidic protein (GFAP) and cellular infiltration. The present results show that the neuroprotective action of mildronate results at least partially from anti-neurodegenerative (anti-apoptotic) and anti-inflammatory mechanisms. It might be suggested that the molecular conformation of mildronate can facilitate its easy binding to mitochondria, and regulate the expression of different signal molecules, hence maintaining cellular signaling and survival.


International Journal of Molecular Sciences | 2010

Neuroprotective Properties of Mildronate, a Small Molecule, in a Rat Model of Parkinson’s Disease

Vija Klusa; Sergejs Isajevs; Darja Svirina; Jolanta Pupure; Ulrika Beitnere; Juris Rumaks; Simons Svirskis; Baiba Jansone; Zane Dzirkale; Ruta Muceniece; Ivars Kalvinsh; Harry V. Vinters

Previously, we have found that mildronate [3-(2,2,2-trimethylhydrazinium) propionate dihydrate], a small molecule with charged nitrogen and oxygen atoms, protects mitochondrial metabolism that is altered by inhibitors of complex I and has neuroprotective effects in an azidothymidine-neurotoxicity mouse model. In the present study, we investigated the effects of mildronate in a rat model of Parkinson’s disease (PD) that was generated via a unilateral intrastriatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed the expression of cell biomarkers that are involved in signaling cascades and provide neural and glial integration: the neuronal marker TH (tyrosine hydroxylase); ubiquitin (a regulatory peptide involved in the ubiquitin-proteasome degradation system); Notch-3 (a marker of progenitor cells); IBA-1 (a marker of microglial cells); glial fibrillary acidic protein, GFAP (a marker of astrocytes); and inducible nitric oxide synthase, iNOS (a marker of inflammation). The data show that in the 6-OHDA-lesioned striatum, mildronate completely prevented the loss of TH, stimulated Notch-3 expression and decreased the expression of ubiquitin, GFAP and iNOS. These results provide evidence for the ability of mildronate to control the expression of an array of cellular proteins and, thus, impart multi-faceted homeostatic mechanisms in neurons and glial cells in a rat model of PD. We suggest that the use of mildronate provides a protective effect during the early stages of PD that can delay or halt the progression of this neurodegenerative disease.


Planta Medica | 2008

Potato (Solanum tuberosum) Juice Exerts an Anticonvulsant Effect in Mice through Binding to GABA Receptors

Ruta Muceniece; Kristine Saleniece; Liga Krigere; Juris Rumaks; Zane Dzirkale; Rudolfs Mezhapuke; Jorens Kviesis; Peteris Mekss; Vija Klusa; Helgi B. Schiöth; Maija Dambrova

Naturally occurring benzodiazepines have been identified in regular food such as wheat and potato, but there is still no evidence that potato extracts can affect CNS responses in vivo. Here we found that undiluted potato juice and potato juice diluted with saline 1 : 2 administered 10 min intracisternally ( I. C.) and 30 min per os before bicuculline exerted significant anticonvulsant activity in the bicuculline-induced seizure threshold test in mice. In vitro, potato juice from different harvests at dilution series from 10 % to 0.000001 %, diluted 100,000-fold, displaced 50 % of gamma-aminobutyric acid (GABA) receptor ligand [ (3)H]GABA and diluted 40-fold displaced 50 % of [(3)H]flunitrazepam from binding sites in mice forebrain membranes. The low content of diazepam (0.04 +/- 0.01 mg/kg) determined by HPLC and mass spectrometry in the potato extracts could not sustain the anticonvulsant activity of potato juice in vivo; therefore we hypothesized that potato juice might contain GABA (A) receptor GABA-site active compounds. The findings of this study suggest that potato juice as well as potato taken as food may have the capacity of influencing brain GABA-ergic activity.


BMC Neuroscience | 2013

Characterization of the transporterB0AT3 (Slc6a17) in the rodent central nervous system

Maria Hägglund; Sofie V. Hellsten; Sonchita Bagchi; Anna Ljungdahl; Victor C. Nilsson; Sonja Winnergren; Olga Stephansson; Juris Rumaks; Simons Svirskis; Vija Klusa; Helgi B. Schiöth; Robert Fredriksson

BackgroundThe vesicular B0AT3 transporter (SLC6A17), one of the members of the SLC6 family, is a transporter for neutral amino acids and is exclusively expressed in brain. Here we provide a comprehensive expression profile of B0AT3 in mouse brain using in situ hybridization and immunohistochemistry.ResultsWe confirmed previous expression data from rat brain and used a novel custom made antibody to obtain detailed co-labelling with several cell type specific markers. B0AT3 was highly expressed in both inhibitory and excitatory neurons. The B0AT3 expression was highly overlapping with those of vesicular glutamate transporter 2 (VGLUT2) and vesicular glutamate transporter 1 (VGLUT1). We also show here that Slc6a17mRNA is up-regulated in animals subjected to short term food deprivation as well as animals treated with the serotonin reuptake inhibitor fluoxetine and the dopamine/noradrenaline reuptake inhibitor bupropion.ConclusionsThis suggests that the B0AT3 transporter have a role in regulation of monoaminergic as well as glutamatergic synapses.


Journal of Pharmacy and Pharmacology | 2011

Comparative study of taurine and tauropyrone: GABA receptor binding, mitochondrial processes and behaviour

Zane Dzirkale; Jolanta Pupure; Juris Rumaks; Simons Svirskis; Marija Vanina; Rudolfs Mezhapuke; Velga Sile; Maria A.S. Fernandes; Gunars Duburs; Vija Klusa

Objectives  Taurine, a sulfur‐containing amino acid, has high hydrophilicity and is poorly absorbed. Tauropyrone, a taurine‐containing 1,4‐dihydropyridine derivative, is suggested to have greater activity than taurine owing to improved physicochemical properties that facilitate delivery of the compound to target cells. The aim of this study was to determine whether the 1,4‐dihydropyridine moiety in tauropyrone improves the pharmacological efficacy of taurine in vitro and in vivo.


Basic & Clinical Pharmacology & Toxicology | 2008

Distinct Influence of Atypical 1,4‐Dihydropyridine Compounds in Azidothymidine‐Induced Neuro‐ and Cardiotoxicity in Mice Ex Vivo

Jolanta Pupure; Sergejs Isajevs; Valentina Gordjushina; Immanuels Taivans; Juris Rumaks; Simons Svirskis; Aina Kratovska; Zane Dzirkale; Jelena Pilipenko; Gunars Duburs; Vija Klusa

This study demonstrates the effective protection by compounds of atypical 1,4-dihydropyridine (DHP) series cerebrocrast, glutapyrone and tauropyrone against neuro- and cardiotoxicity caused by the model compound azidothymidine, a well-known mitochondria-compromising anti-HIV drug. In previous in vitro experiments, we have demonstrated distinct effects of these DHP compounds to influence mitochondrial functioning. In the present in vivo experiments, DHP compounds were administered intraperitoneally in mice daily for 2 weeks, per se and in combinations with azidothymidine at doses: azidothymidine 50 mg/kg; cerebrocrast 0.1 mg/kg; glutapyrone 1 mg/kg; and tauropyrone 1 mg/kg. At the end of the experiment, mice were killed, heart and brain tissues were removed and examined ex vivo histopathologically and immunohistochemically. NF-kappaBp65 and caspase-3 were used as the markers indicating inflammatory and apoptotic events, respectively. Cerebrocrast (dicyclic structure) was the most potent DHP, which effectively reduced azidothymidine-induced overexpression of NF-kappaBp65 and caspase-3 in mouse myocardium and brain cortex. Glutapyrone per se increased the number of caspase-3-positive cells in the brain, whereas it reduced NF-kappaBp65 and caspase-3 expression in cardiac tissue caused by azidothymidine. Tauropyrone showed dual action: per se it increased caspase-3 in the brain and NF-kappaBp65 expression in the heart, but it considerably reduced these activations in azidothymidine-treated mice. This study provides the first demonstration of a distinct pharmacological action for atypical DHP compounds in cardiac and brain tissues. The dicyclic structure of cerebrocrast is considered beneficial for neuro- and cardioprotection at least in part via mitochondrial targeting and consequent regulation of inflammatory and apoptotic processes.


Behavioural Brain Research | 2013

Lunasin-induced behavioural effects in mice: Focus on the dopaminergic system

Zane Dzirkale; Juris Rumaks; Simons Svirskis; Olga Mazina; Anni Allikalt; Ago Rinken; Kaspars Jekabsons; Ruta Muceniece; Vija Klusa

The present study for the first time is devoted to identify central effects of synthetic lunasin, a 43 amino acid peptide. A markedly expressed neuroleptic/cataleptic effect was observed at low (0.1-10 nmol/mouse) centrally administered doses in male C57Bl/6 mice. Lunasin considerably reduced the amphetamine hyperlocomotion but weakly apomorphine climbing behaviour. No influence on ketamine and bicuculline effects was observed. Binding assay studies demonstrated modest affinity of lunasin for the dopamine D₁ receptor (Ki=60 ± 15 μM). In a functional assay of cAMP accumulation on live cells lunasin antagonised apomorphine effect on D₁ receptor activation (pEC₅₀=6.1 ± 0.3), but had no effect in cells expressing D₂ receptors. The obtained data suggest that lunasins action at least in part is provided via dopaminergic D1 receptor pathways. However, other non-identified mechanisms (probably intracellular) may play an important role in lunasins central action. Nevertheless further studies of lunasin are promising, particularly taking into account a necessity for novel type of antipsychotic drugs.


Pharmacology, Biochemistry and Behavior | 2009

γ1- and γ2-melanocyte stimulating hormones induce central anxiogenic effects and potentiate ethanol withdrawal responses in the elevated plus-maze test in mice

Baiba Jansone; Juris Rumaks; Zane Dzirkale; Jolanta Pupure; Simons Svirskis; Ruta Muceniece; Vija Klusa

Little is known about the endogenous functions of gamma1- and gamma2-melanocyte stimulating hormones (gamma1- and gamma2-MSH). Although gamma-MSHs bind to melanocortin receptor subtypes 3 and 4, we have previously shown that these peptides also influence non-melanocortinergic processes, such as dopaminergic and GABAergic. The aim of this study was to determine the effects of gamma1- and gamma2-MSH (at doses 0.3, 1 and 2 nmol/mouse/5 microl) on the anxiety levels in mice in elevated plus maze. Three experimental paradigms were performed to assess the effects of peptides on: a) ethanol withdrawal; b) acute ethanol-induced anxiolytic action; c) peptides per se. We used ethanol as the model substance, since its action involves either dopaminergic/GABAergic or melanocortinergic processes. gamma-MSHs were administered intracisternally in mice and behavioural responses were assessed in the elevated plus maze test. This study provides the first demonstration of an anxiogenic effect of gamma1- and gamma2-MSH, their synergistic/additive effect on ethanol withdrawal-induced anxiety behaviour, and an antagonism of peptides involved in the anxiolytic action of ethanol. Furthermore, results suggest that gamma-MSHs belong to an anxiogenic peptide family that may play an important role in anxiety disorders as well as in the development of alcohol dependence and/or alcohol withdrawal-induced behaviours.

Collaboration


Dive into the Juris Rumaks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge