Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juro Sakai is active.

Publication


Featured researches published by Juro Sakai.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome

Toshiya Tanaka; Joji Yamamoto; Satoshi Iwasaki; Hiroshi Asaba; Hiroki Hamura; Yukio Ikeda; Mitsuhiro Watanabe; Kenta Magoori; Ryoichi X. Ioka; Keisuke Tachibana; Yuichiro Watanabe; Yasutoshi Uchiyama; Koichi Sumi; Haruhisa Iguchi; Sadayoshi Ito; Takefumi Doi; Takao Hamakubo; Makoto Naito; Johan Auwerx; Masashi Yanagisawa; Tatsuhiko Kodama; Juro Sakai

In this study, we defined the role of peroxisome proliferator-activated receptor β/δ (PPARδ) in metabolic homeostasis by using subtype selective agonists. Analysis of rat L6 myotubes treated with the PPARδ subtype-selective agonist, GW501516, by the Affymetrix oligonucleotide microarrays revealed that PPARδ controls fatty acid oxidation by regulating genes involved in fatty acid transport, β-oxidation, and mitochondrial respiration. Similar PPARδ-mediated gene activation was observed in the skeletal muscle of GW501516-treated mice. Accordingly, GW501516 treatment induced fatty acid β-oxidation in L6 myotubes as well as in mouse skeletal muscles. Administration of GW501516 to mice fed a high-fat diet ameliorated diet-induced obesity and insulin resistance, an effect accompanied by enhanced metabolic rate and fatty acid β-oxidation, proliferation of mitochondria, and a marked reduction of lipid droplets in skeletal muscles. Despite a modest body weight change relative to vehicle-treated mice, GW501516 treatment also markedly improved diabetes as revealed by the decrease in plasma glucose and blood insulin levels in genetically obese ob/ob mice. These data suggest that PPARδ is pivotal to control the program for fatty acid oxidation in the skeletal muscle, thereby ameliorating obesity and insulin resistance through its activation in obese animals.


Cell | 1996

Sterol-Regulated Release of SREBP-2 from Cell Membranes Requires Two Sequential Cleavages, One Within a Transmembrane Segment

Juro Sakai; Elizabeth A. Duncan; Robert B. Rawson; Xianxin Hua; Michael S. Brown; Joseph L. Goldstein

Sterol regulatory element binding proteins (SREBPs) are transcription factors attached to the endoplasmic reticulum. The NH2-segment, which activates transcription, is connected to membranes by a hairpin anchor formed by two transmembrane sequences and a short lumenal loop. Using H-Ras-SREBP-2 fusion proteins, we show that the NH2-segment is released from membranes by two sequential cleavages. The first, regulated by sterols, occurs in the lumenal loop. The second, not regulated by sterols, occurs within the first transmembrane domain. The liberated NH2-segment enters the nucleus and activates genes controlling cholesterol synthesis and uptake. Certain mutant Chinese hamster ovary cells are auxotrophic for cholesterol because they fail to carry out the second cleavage; the NH2-segment remains membrane-bound and transcription is not activated.


Molecular Cell | 1997

Complementation Cloning of S2P ,a Gene Encoding a Putative Metalloprotease Required for Intramembrane Cleavage of SREBPs

Robert B. Rawson; Nikolai G. Zelenski; Deepak Nijhawan; Jin Ye; Juro Sakai; Mazahir T. Hasan; Ta-Yuan Chang; Michael S. Brown; Joseph L. Goldstein

We report the cloning of a gene, S2P, that encodes a putative metalloprotease required for intramembrane proteolysis of sterol-regulatory element-binding proteins (SREBPs) at Site-2. SREBPs are membrane-bound transcription factors that activate genes regulating cholesterol metabolism. The active NH2-terminal domains of SREBPs are released from membranes by sequential cleavage at two sites: Site-1, within the lumen of the endoplasmic reticulum; and Site-2, within a transmembrane segment. The human S2P gene was cloned by complementation of mutant CHO cells that cannot cleave SREBPs at Site-2 and are cholesterol auxotrophs. S2P defines a new family of polytopic membrane proteins that contain an HEXXH sequence characteristic of zinc metalloproteases. Mutation of the putative zinc-binding residues abolishes S2P activity. S2P encodes an unusual metalloprotease that cleaves proteins within transmembrane segments.


Molecular Cell | 1998

Molecular Identification of the Sterol-Regulated Luminal Protease that Cleaves SREBPs and Controls Lipid Composition of Animal Cells

Juro Sakai; Robert B. Rawson; Peter J. Espenshade; Dong Cheng; Adam C. Seegmiller; Joseph L. Goldstein; Michael S. Brown

The lipid composition of animal cells is controlled by SREBPs, transcription factors released from membranes by sterol-regulated proteolysis. Release is initiated by Site-1 protease (S1P), which cleaves SREBPs in the ER luminal loop between two membrane-spanning regions. To clone S1P, we prepared pCMV-PLAP-BP2, which encodes a fusion protein that contains placental alkaline phosphatase (PLAP) in the ER lumen flanked by cleavage sites for signal peptidase and S1P. In sterol-deprived cells, cleavage by both proteases leads to PLAP secretion. PLAP is not secreted by SRD-12B cells, cholesterol auxotrophs that lack S1P. We transfected SRD-12B cells with pCMV-PLAP-BP2 plus pools of CHO cDNAs and identified a cDNA that restores Site-1 cleavage and PLAP secretion. The cDNA encodes S1P, an intraluminal 1052-amino-acid membrane-bound subtilisin-like protease. We propose that S1P is the sterol-regulated protease that controls lipid metabolism in animal cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion

Takahiro Fujino; Hiroshi Asaba; Man Jong Kang; Yukio Ikeda; Hideyuki Sone; Shinji Takada; Dong Ho Kim; Ryoichi X. Ioka; Masao Ono; Hiroko Tomoyori; Minoru Okubo; Toshio Murase; Akihisa Kamataki; Joji Yamamoto; Kenta Magoori; Sadao Takahashi; Yoshiharu Miyamoto; Hisashi Oishi; Masato Nose; Mitsuyo Okazaki; Shinichi Usui; Katsumi Imaizumi; Masashi Yanagisawa; Juro Sakai; Tokuo T. Yamamoto

A Wnt coreceptor low-density lipoprotein receptor-related protein 5 (LRP5) plays an essential role in bone accrual and eye development. Here, we show that LRP5 is also required for normal cholesterol and glucose metabolism. The production of mice lacking LRP5 revealed that LRP5 deficiency led to increased plasma cholesterol levels in mice fed a high-fat diet, because of the decreased hepatic clearance of chylomicron remnants. In addition, when fed a normal diet, LRP5-deficient mice showed a markedly impaired glucose tolerance. The LRP5-deficient islets had a marked reduction in the levels of intracellular ATP and Ca2+ in response to glucose, and thereby glucose-induced insulin secretion was decreased. The intracellular inositol 1,4,5-trisphosphate (IP3) production in response to glucose was also reduced in LRP5−/− islets. Real-time PCR analysis revealed a marked reduction of various transcripts for genes involved in glucose sensing in LRP5−/− islets. Furthermore, exposure of LRP5+/+ islets to Wnt-3a and Wnt-5a stimulates glucose-induced insulin secretion and this stimulation was blocked by the addition of a soluble form of Wnt receptor, secreted Frizzled-related protein-1. In contrast, LRP5-deficient islets lacked the Wnt-3a-stimulated insulin secretion. These data suggest that Wnt/LRP5 signaling contributes to the glucose-induced insulin secretion in the islets.


The EMBO Journal | 1996

Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis.

Xiaodong Wang; Nikolai G. Zelenski; Jianxin Yang; Juro Sakai; Michael S. Brown; Joseph L. Goldstein

Cellular cholesterol homeostasis is controlled by sterol‐regulated proteolysis of membrane‐bound transcription factors called sterol‐regulatory element binding proteins (SREBPs). CPP32, a cysteine protease, was shown previously to cleave SREBP‐1 and SREBP‐2 in vitro at an aspartic acid between the basic helix‐loop‐helix leucine zipper domain and the first trans‐membrane domain, liberating a transcriptionally active fragment. Here, we show that CPP32 exists in an inactive 32 kDa form in Chinese hamster ovary (CHO) cells. When apoptosis was induced with the protein kinase inhibitor staurosporine, CPP32 was cleaved to subunits of 20 and 10 kDa to form the active protease. Under these conditions membrane‐bound SREBP‐1 and SREBP‐2 were both cleaved, and the transcriptionally active N‐terminal fragments were found in nuclear extracts. Similar results were obtained in human U937 cells induced to undergo apoptosis by anti‐Fas and etoposide. The apoptosis‐induced cleavage of SREBPs was not suppressed by sterols, indicating that apoptosis‐induced cleavage and sterol‐regulated cleavage are mediated by different proteases. CHO cells expressing a mutant SREBP‐2 with an Asp–> Ala mutation at the CPP32 cleavage site showed sterol‐regulated cleavage but no apoptosis‐induced cleavage. These data are consistent with the emerging concept that CPP32 is a central mediator in apoptosis. They also indicate that SREBPs, like poly (ADP) ribose polymerase, are cleaved by CPP32 during programmed cell death.


Journal of Biological Chemistry | 1998

Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies

Juro Sakai; Axel Nohturfft; Joseph L. Goldstein; Michael S. Brown

Sterol regulatory element-binding proteins (SREBPs) are membrane-bound transcription factors that promote lipid synthesis in animal cells. They are embedded in the membranes of the endoplasmic reticulum (ER) in a helical hairpin orientation and are released from the ER by a two-step proteolytic process. Proteolysis begins when the SREBPs are cleaved at Site-1, which is located at a leucine residue in the middle of the hydrophobic loop in the lumen of the ER. Sterols suppress Site-1 cleavage, apparently by interacting with a polytopic membrane protein designated SREBP cleavage-activating protein (SCAP). SREBPs and SCAP are joined together in ER membranes through interaction of their cytoplasmic COOH-terminal domains. Here we use an in vivo competition assay in transfected cells to show that the SREBP·SCAP complex is essential for Site-1 cleavage. Overexpression of the truncated COOH-terminal domains of either SREBP-2 or SCAP disrupted the complex between full-length SREBP-2 and SCAP as measured by co-immunoprecipitation. This resulted in a complete inhibition of Site-1 cleavage that was restored by concomitant overexpression of full-length SCAP. The transfected COOH-terminal domains also inhibited the transcription of a reporter gene driven by an SRE-containing promoter, and this, too, was restored by overexpression of full-length SCAP. We interpret these data to indicate that the SREBP·SCAP complex directs the Site-1 protease to its target in the lumenal domain of SREBP and that disruption of this complex inactivates the Site-1 cleavage reaction.


Journal of Biological Chemistry | 1997

Identification of Complexes between the COOH-terminal Domains of Sterol Regulatory Element-binding Proteins (SREBPs) and SREBP Cleavage-Activating Protein

Juro Sakai; Axel Nohturfft; Dong Cheng; Y K Ho; Michael S. Brown; Joseph L. Goldstein

SREBP cleavage-activating protein (SCAP) stimulates the proteolytic cleavage of membrane-bound SREBPs, thereby initiating the release of NH2-terminal fragments from cell membranes. The liberated fragments enter the nucleus and stimulate transcription of genes involved in synthesis and uptake of cholesterol and fatty acids. Sterols repress cleavage of SREBPs, apparently by interacting with the membrane attachment domain of SCAP. In the present studies we show that SCAP, like the SREBPs, is located in membranes of the endoplasmic reticulum and nuclear envelope. The COOH-terminal domain of SCAP, like that of the SREBPs, is located on the cytosolic face of the membranes. Co-immunoprecipitation experiments show that SCAP and SREBP-2 form a complex that can be precipitated with antibodies to either component. Complex formation occurs when cells express only the COOH-terminal domain of either SREBP-2 or SCAP, indicating that the complex forms between the two COOH-terminal domains. Truncation of SREBP-2 at its COOH terminus prevents the formation of complexes with SCAP and simultaneously reduces proteolytic cleavage. We conclude that proteolytic cleavage of SREBPs requires the formation of a complex with the COOH-terminal domain of SCAP and that SCAP is therefore a required element in the regulation of sterol and fatty acid metabolism in animal cells.


Molecular and Cellular Biology | 2009

The Peroxisome Proliferator-Activated Receptor γ/Retinoid X Receptor α Heterodimer Targets the Histone Modification Enzyme PR-Set7/Setd8 Gene and Regulates Adipogenesis through a Positive Feedback Loop

Ken-ichi Wakabayashi; Masashi Okamura; Shuichi Tsutsumi; Naoko Nishikawa; Toshiya Tanaka; Iori Sakakibara; Jun-ichi Kitakami; Sigeo Ihara; Yuichi Hashimoto; Takao Hamakubo; Tatsuhiko Kodama; Hiroyuki Aburatani; Juro Sakai

ABSTRACT Control of cell differentiation occurs through transcriptional mechanisms and through epigenetic modification. Using a chromatin immunoprecipitation-on-chip approach, we performed a genome-wide search for target genes of peroxisome proliferator-activated receptor γ (PPARγ) and its partner protein retinoid X receptor α during adipogenesis. We show that these two receptors target several genes that encode histone lysine methyltransferase SET domain proteins. The histone H4 Lys 20 (H4K20) monomethyltransferase PR-Set7/Setd8 gene is upregulated by PPARγ during adipogenesis, and the knockdown of PR-Set7/Setd8 suppressed adipogenesis. Intriguingly, monomethylated H4K20 (H4K20me1) levels are robustly increased toward the end of differentiation. PR-Set7/Setd8 positively regulates the expression of PPARγ and its targets through H4K20 monomethylation. Furthermore, the activation of PPARγ transcriptional activity leads to the induction of H4K20me1 modification of PPARγ and its targets and thereby promotes adipogenesis. We also show that PPARγ targets PPARγ2 and promotes its gene expression through H4K20 monomethylation. Our results connect transcriptional regulation and epigenetic chromatin modulation through H4K20 monomethylation during adipogenesis through a feedback loop.


Journal of Biological Chemistry | 1998

Second-site Cleavage in Sterol Regulatory Element-binding Protein Occurs at Transmembrane Junction as Determined by Cysteine Panning

Elizabeth A. Duncan; Utpal P. Davé; Juro Sakai; Joseph L. Goldstein; Michael S. Brown

In response to sterol deprivation, two sequential proteolytic cleavages release the NH2-terminal fragments of sterol regulatory element-binding proteins (SREBPs) from cell membranes. The fragments translocate to the nucleus where they activate genes involved in cholesterol and fatty acid metabolism. The SREBPs are bound to membranes in a hairpin fashion. The NH2-terminal and COOH-terminal domains face the cytoplasm, separated by two membrane spanning segments and a short lumenal loop. The first cleavage occurs at Site-1 in the lumenal loop. The NH2-terminal fragment is then released by cleavage at Site-2, which is believed to lie within the first transmembrane segment. Here, we use a novel cysteine panning method to identify the second cleavage site (Site-2) in human SREBP-2 as the Leu484-Cys485 bond that lies at the junction between the cytoplasmic NH2-terminal fragment and the first transmembrane segment. We transfected cells with cDNAs encoding fusion proteins with single cysteine residues at positions to the NH2-terminal and COOH-terminal sides of cysteine 485. The NH2-terminal fragments were tested for susceptibility to modification withN α-(3-maleimidylpropionyl)biocytin, which attaches a biotin group to cysteine sulfhydryls. Cysteines to the NH2-terminal side of cysteine 485 were retained on the NH2-terminal fragment, but cysteines to the COOH-terminal side of leucine 484 were lost. Leucine 484 is three residues to the COOH-terminal side of the tetrapeptide Asp-Arg-Ser-Arg, which immediately precedes the first transmembrane segment and is required for Site-2 cleavage.

Collaboration


Dive into the Juro Sakai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Inagaki

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge