Just M. Vlak
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Just M. Vlak.
Archives of Virology | 2006
Johannes A. Jehle; Gary W. Blissard; Bryony C. Bonning; J. S. Cory; Elisabeth A. Herniou; George F. Rohrmann; David A. Theilmann; S. M. Thiem; Just M. Vlak
Summary.Recent evidence from genome sequence analyses demands a substantial revision of the taxonomy and classification of the family Baculoviridae. Comparisons of 29 baculovirus genomes indicated that baculovirus phylogeny followed the classification of the hosts more closely than morphological traits that have previously been used for classification of this virus family. On this basis, dipteran- and hymenopteran-specific nucleopolyhedroviruses (NPV) should be separated from lepidopteran-specific NPVs and accommodated into different genera. We propose a new classification and nomenclature for the genera within the baculovirus family. According to this proposal the updated classification should include four genera: Alphabaculovirus (lepidopteran-specific NPV), Betabaculovirus (lepidopteran-specific Granuloviruses), Gammabaculovirus (hymenopteran-specific NPV) and Deltabaculovirus (dipteran-specific NPV).
Journal of Virology | 2004
Jeroen Witteveldt; Carolina C. Cifuentes; Just M. Vlak; Mariëlle C. W. van Hulten
ABSTRACT White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response system such as that present in vertebrates. As it has been demonstrated that shrimp surviving a WSSV infection have higher survival rates upon subsequent rechallenge, we investigated the potential of oral vaccination of shrimp with subunit vaccines consisting of WSSV virion envelope proteins. Penaeus monodon shrimp were fed food pellets coated with inactivated bacteria overexpressing two WSSV envelope proteins, VP19 and VP28. Vaccination with VP28 showed a significant lower cumulative mortality compared to vaccination with bacteria expressing the empty vectors after challenge via immersion (relative survival, 61%), while vaccination with VP19 provided no protection. To determine the onset and duration of protection, challenges were subsequently performed 3, 7, and 21 days after vaccination. A significantly higher survival was observed both 3 and 7 days postvaccination (relative survival, 64% and 77%, respectively), but the protection was reduced 21 days after the vaccination (relative survival, 29%). This suggests that contrary to current assumptions that invertebrates do not have a true adaptive immune system, a specific immune response and protection can be induced in P. monodon. These experiments open up new ways to benefit the WSSV-hampered shrimp farming industry.
Journal of Virology | 2001
Elisabeth A. Herniou; Teresa Luque; Xinwen Chen; Just M. Vlak; Doreen Winstanley; Jennifer S. Cory; David R. O'Reilly
ABSTRACT Several phylogenetic methods based on whole genome sequence data were evaluated using data from nine complete baculovirus genomes. The utility of three independent character sets was assessed. The first data set comprised the sequences of the 63 genes common to these viruses. The second set of characters was based on gene order, and phylogenies were inferred using both breakpoint distance analysis and a novel method developed here, termed neighbor pair analysis. The third set recorded gene content by scoring gene presence or absence in each genome. All three data sets yielded phylogenies supporting the separation of the Nucleopolyhedrovirus (NPV) andGranulovirus (GV) genera, the division of the NPVs into groups I and II, and species relationships within group I NPVs. Generation of phylogenies based on the combined sequences of all 63 shared genes proved to be the most effective approach to resolving the relationships among the group II NPVs and the GVs. The history of gene acquisitions and losses that have accompanied baculovirus diversification was visualized by mapping the gene content data onto the phylogenetic tree. This analysis highlighted the fluid nature of baculovirus genomes, with evidence of frequent genome rearrangements and multiple gene content changes during their evolution. Of more than 416 genes identified in the genomes analyzed, only 63 are present in all nine genomes, and 200 genes are found only in a single genome. Despite this fluidity, the whole genome-based methods we describe are sufficiently powerful to recover the underlying phylogeny of the viruses.
Journal of Virology | 2012
Esther Schnettler; Mark G. Sterken; Jason Y. Leung; Stefan W. Metz; Corrine Geertsema; Rob Goldbach; Just M. Vlak; Alaine Kohl; Alexander A. Khromykh; Gorben P. Pijlman
ABSTRACT West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.
Virology | 1991
M. Kool; J.W. Voncken; F.L.J. Van Lier; J. Tramper; Just M. Vlak
Defective interfering particles (DIPs) were generated upon continuous production of Autographa californica nuclear polyhedrosis virus (AcNPV) in bioreactors. This configuration mimicked the serial undiluted passaging of virus, which is known to result in plaque-morphology mutants. Restriction enzyme analysis of DIP-containing preparations of extracellular virus showed the presence of many DNA fragments in less than equimolar amounts. These fragments were colinear on the physical map of AcNPV and extended from map position 1.7 to 45. These DIPs thus lacked 43% of the genetic information of the standard virus, including the polyhedrin and DNA polymerase genes. The existence of DIPs was confirmed by electron microscopy, where virions were observed with reduced length. Among the less than equimolar fragments in DIP-containing preparations, fragments were observed linking sequences from map positions 1.7 and 45 via a TGTT linker of unknown origin. The DIPs could not be plaque-purified and needed standard (helper) virus to replicate; DIP-containing preparations interfered with standard virus replication in an interference assay, which explained the reduction in productivity of an AcNPV expression vector-insect cell system in continuous bioreactor operations. The origin of these DIPs and their possible generation mechanism are discussed.
Journal of Virology | 2010
Jelke J. Fros; Wen Jun Liu; Natalie A. Prow; Corinne Geertsema; Maarten Ligtenberg; Dana L. Vanlandingham; Esther Schnettler; Just M. Vlak; Andreas Suhrbier; Alexander A. Khromykh; Gorben P. Pijlman
ABSTRACT Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the hosts antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis.
Journal of Invertebrate Pathology | 2012
Grant D. Stentiford; Douglas M. Neil; Edmund J. Peeler; Jeffrey D. Shields; Hamish J. Small; Timothy W. Flegel; Just M. Vlak; Brian Jones; F. Morado; S. Moss; Jeffrey M. Lotz; Lyric C. Bartholomay; D. C. Behringer; Chris Hauton; Donald V. Lightner
Seafood is a highly traded food commodity. Farmed and captured crustaceans contribute a significant proportion with annual production exceeding 10 M metric tonnes with first sale value of
Journal of Virology | 2006
Gang Long; Xiaoyu Pan; Richard Kormelink; Just M. Vlak
40bn. The sector is dominated by farmed tropical marine shrimp, the fastest growing sector of the global aquaculture industry. It is significant in supporting rural livelihoods and alleviating poverty in producing nations within Asia and Latin America while forming an increasing contribution to aquatic food supply in more developed countries. Nations with marine borders often also support important marine fisheries for crustaceans that are regionally traded as live animals and commodity products. A general separation of net producing and net consuming nations for crustacean seafood has created a truly globalised food industry. Projections for increasing global demand for seafood in the face of level or declining fisheries requires continued expansion and intensification of aquaculture while ensuring best utilisation of captured stocks. Furthermore, continued pressure from consuming nations to ensure safe products for human consumption are being augmented by additional legislative requirements for animals (and their products) to be of low disease status. As a consequence, increasing emphasis is being placed on enforcement of regulations and better governance of the sector; currently this is a challenge in light of a fragmented industry and less stringent regulations associated with animal disease within producer nations. Current estimates predict that up to 40% of tropical shrimp production (>
Journal of General Virology | 1995
M. Kool; Christian H. Ahrens; Just M. Vlak; George F. Rohrmann
3bn) is lost annually, mainly due to viral pathogens for which standard preventative measures (e.g. such as vaccination) are not feasible. In light of this problem, new approaches are urgently required to enhance yield by improving broodstock and larval sourcing, promoting best management practices by farmer outreach and supporting cutting-edge research that aims to harness the natural abilities of invertebrates to mitigate assault from pathogens (e.g. the use of RNA interference therapeutics). In terms of fisheries losses associated with disease, key issues are centred on mortality and quality degradation in the post-capture phase, largely due to poor grading and handling by fishers and the industry chain. Occurrence of disease in wild crustaceans is also widely reported, with some indications that climatic changes may be increasing susceptibility to important pathogens (e.g. the parasite Hematodinium). However, despite improvements in field and laboratory diagnostics, defining population-level effects of disease in these fisheries remains elusive. Coordination of disease specialists with fisheries scientists will be required to understand current and future impacts of existing and emergent diseases on wild stocks. Overall, the increasing demand for crustacean seafood in light of these issues signals a clear warning for the future sustainability of this global industry. The linking together of global experts in the culture, capture and trading of crustaceans with pathologists, epidemiologists, ecologists, therapeutics specialists and policy makers in the field of food security will allow these issues to be better identified and addressed.
Journal of Virology | 2002
Oliver Lung; Marcel Westenberg; Just M. Vlak; D. Zuidema; Gary W. Blissard
ABSTRACT Entry of the budded virus form of baculoviruses into insect and mammalian cells is generally thought to occur through a low-pH-dependent endocytosis pathway, possibly through clathrin-coated pits. This insight is primarily based on (immuno)electron microscopy studies but requires biochemical support to exclude the use of other pathways. Here, we demonstrate using various inhibitors that functional entry of baculoviruses into insect and mammalian cells is primarily dependent on clathrin-mediated endocytosis. Our results further suggest that caveolae are somehow involved in baculovirus entry in mammalian cells. A caveolar endocytosis inhibitor, genistein, enhances baculovirus transduction in these cells considerably.