Justen Poole
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justen Poole.
Analytical Chemistry | 2017
Germán Augusto Gómez-Ríos; Emanuela Gionfriddo; Justen Poole; Janusz Pawliszyn
The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.
Journal of Pharmaceutical and Biomedical Analysis | 2017
Marcos Tascon; Germán Augusto Gómez-Ríos; Nathaly Reyes-Garcés; Justen Poole; Ezel Boyacı; Janusz Pawliszyn
HIGHLIGHTSA Coated Blade Spray method for voriconazole determination from human plasma was developed.Analysis from from spots (10 &mgr;L) and small volumes (300 &mgr;L) of plasma were performed.Total analysis times obtained were between 120 and 180 s.The methodology was successfully validated for different plasma lots and patients.Relative matrix effects as low as 7% were achieved. ABSTRACT Voriconazole is a triazole broad‐spectrum antifungal medication often used to treat fungal infections caused by Aspergillus and Fusarium species. One of the main challenges associated with the implementation of this medication is its narrow therapeutic concentration range, demonstrating toxicity at concentrations above 6 &mgr;g/mL and limited efficacy at concentrations below 2 &mgr;g/mL. As a result, methodologies which permit the rapid and accurate quantitation of voriconazole in patients are highly desirable. In this work two different approaches based on coated blade spray directly coupled to mass spectrometry (CBS‐MS) are introduced; each enabling the quantitation of voriconazole in plasma samples with a simple and fast sample preparation and no chromatographic step. The first approach involves a rapid extraction (1 min) of the target analyte from 300 &mgr;L of human plasma using conventional laboratory vessels (e.g. vial, 96‐well plate). Alternatively, the second strategy consists of a 2 min extraction from a plasma droplet (10 &mgr;L) placed on the coated area of the blade. Both procedures were successfully validated and good linearity (R2 ≥ 0.998), accuracy (91–122%) and precision (<8%) were attained in the concentration range evaluated (0.1–50 &mgr;g/mL). Moreover, very good results in terms of relative matrix effects were obtained given that the slopes of the calibration curves constructed in five different plasma lots exhibited relative standard deviation (RSD) values below 7%. Herein we demonstrated that CBS‐MS is a technology suitable for the ultra‐fast determination of voriconazole in human plasma samples. Indeed, the proposed methodology can be easily used either for routine drug monitoring or for in vitro pharmacokinetic studies in applications where very small sample volumes are available and great temporal resolution is needed.
Analytical Chemistry | 2017
Marcos Tascon; Germán Augusto Gómez-Ríos; Nathaly Reyes-Garcés; Justen Poole; Ezel Boyacı; Janusz Pawliszyn
Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (μe)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, greater reproducibility, and radically reduced analysis times. Coated blade spray (CBS) is a μe technology engineered for extracting/enriching analytes of interest in complex matrices, and it can be directly coupled with MS instruments to achieve efficient screening and quantitative analysis. In this study, we introduced CBS as a technology that can be arranged to perform either rapid diagnostics (single vial) or the high-throughput (96-well plate) analysis of biofluids. Furthermore, we demonstrate that performing 96-CBS extractions at the same time allows the total analysis time to be reduced to less than 55 s per sample. Aiming to validate the versatility of CBS, substances comprising a broad range of molecular weights, moieties, protein binding, and polarities were selected. Thus, the high-throughput (HT)-CBS technology was used for the concomitant quantitation of 18 compounds (mixture of anabolics, β-2 agonists, diuretics, stimulants, narcotics, and β-blockers) spiked in human urine and plasma samples. Excellent precision (∼2.5%), accuracy (≥90%), and linearity (R2 ≥ 0.99) were attained for all the studied compounds, and the limits of quantitation (LOQs) were within the range of 0.1 to 10 ng·mL-1 for plasma and 0.25 to 10 ng·mL-1 for urine. The results reported in this paper confirm CBSs great potential for achieving subsixty-second analyses of target compounds in a broad range of fields such as those related to clinical diagnosis, food, the environment, and forensics.
Analytical Chemistry | 2016
Justen Poole; Jonathan J. Grandy; Germán Augusto Gómez-Ríos; Emanuela Gionfriddo; Janusz Pawliszyn
Solid phase microextraction (SPME) on-fiber derivatization methods have facilitated the achievement of lower detection limits and targeted analysis of various substances that exhibit poor chromatographic behavior, thermal instability, or high reactivity while limiting the use of organic solvents. However, previously developed on-fiber derivatization methods have been hindered by poor loading reproducibility and standard lifetime due to derivatization reagent reactivity. In addition, this reactivity often results in these reagents demonstrating toxic effects, complicating handling and standard formulation. To address this, a reusable standard gas generating vial containing pentafluorophenyl hydrazine (PFPH) has been developed. With this development, SPME fibers can now be reproducibly loaded with derivatization reagent, from an easy to use and safe platform. Validation of the vial using C4-C9 linear aldehyde standards as target analytes demonstrated intrabatch vial reproducibility (2% relative standard deviation (RSD), n = 4), along with PFPH headspace stability over a period of 11 weeks, facilitating reduced reagent consumption due to standard longevity. In addition, reproducibility of the derivatization reaction was observed over 1 week (RSD < 9%), and the linear concentration range was evaluated using headspace extractions from aqueous aldehyde solutions (R(2) > 0.996, 10-200 ppb v/v). Finally, the PFPH-generating vial was applied to the monitoring of volatile aldehydes generated during meat spoilage, as well as an on-site application where the free and total concentration of formaldehyde was determined in car exhaust using a portable GC/MS. To the best of our knowledge, the standard gas generating vial proposed in this work is the first documented device for the long-term storage of reusable headspace standards for a reactive, toxic, and otherwise unstable derivatization reagent standard.
Analytical Chemistry | 2017
Justen Poole; Jonathan J. Grandy; Miao Yu; Ezel Boyacı; Germán Augusto Gómez-Ríos; Nathaly Reyes-Garcés; Barbara Bojko; Harmen Vander Heide; Janusz Pawliszyn
To date, solid-phase microextraction (SPME) fibers used for in vivo bioanalysis can be too fragile and flexible, which limits suitability for direct tissue sampling. As a result, these devices often require a sheathing needle to prepuncture robust sample matrixes and protect the extraction phase from mechanical damage. To address this limitation, a new SPME device is herein presented which incorporates an extraction phase recessed into the body of a solid needle. This device requires no additional support or shielding during puncture events through protective tissue. The presented device was thoroughly tested, being fired at 90 m·s-1 through fish scales, forced through vial septa, and employed in a targeted study of polyunsaturated fatty acids in salmon where the protective outer skin was repetitively punctured during sampling. Finally, the recessed SPME device was applied to an on-site application for the tissue analysis of wild muskellunge. With this advancement, rapid, minimally invasive, and easily executed in vivo SPME is now possible opening the door to near endless sampling opportunities.
Scientific Reports | 2018
Ezel Boyacı; Barbara Bojko; Nathaly Reyes-Garcés; Justen Poole; Germán Augusto Gómez-Ríos; Alexandre Teixeira; Beate Nicol; Janusz Pawliszyn
In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.
Scientific Reports | 2017
Germán Augusto Gómez-Ríos; Marcos Tascon; Nathaly Reyes-Garcés; Ezel Boyacı; Justen Poole; Janusz Pawliszyn
This study demonstrates the quantitative capabilities of coated blade spray (CBS) mass spectrometry (MS) for the concomitant analysis of multiple target substances in biofluid spots. In CBS-MS the analytes present in a given sample are first isolated and enriched in the thin coating of the CBS device. After a quick rinsing of the blade surface, as to remove remaining matrix, the analytes are quickly desorbed with the help of a solvent and then directly electrosprayed into the MS analyzer. Diverse pain management drugs, controlled substances, and therapeutic medications were successfully determined using only 10 µL of biofluid, with limits of quantitation in the low/sub ng·mL−1 level attained within 7 minutes.
Environmental Science & Technology | 2017
Justen Poole; Germán Augusto Gómez-Ríos; Ezel Boyacı; Nathaly Reyes-Garcés; Janusz Pawliszyn
The widespread use of pharmaceuticals in both human and animal populations, and the resultant contamination of surface waters from the outflow of water treatment facilities is an issue of growing concern. This has raised the need for analytical methods that can both perform rapid sample analysis and overcome the limitations of conventional analysis procedures, such as multistep workflows and tedious procedures. Coated blade spray (CBS) is a solid-phase microextraction based technique that enables the direct-to-mass-spectrometry analysis of extracted compounds via the use of limited organic solvent to desorb analytes and perform electrospray ionization. This paper documents how CBS can be applied for the concomitant tandem mass spectrometric (MS/MS) analysis of nine pharmaceuticals in treated wastewater. The total analysis times of less than 11 min provided limits of detection lower than 50 ng L-1 for all target compounds in river water. The CBS methodology was then compared to a conventional solid-phase extraction technique for the analysis of the final effluent of six wastewater treatment facilities. The experimental results strongly suggest that CBS offers scientists a viable alternative method for analyzing water samples that is both rapid and relatively solvent-free.
Chemosphere | 2016
Joseph O. Okeme; J. Mark Parnis; Justen Poole; Miriam Diamond; Liisa M. Jantunen
Marine Pollution Bulletin | 2016
Terry F. Bidleman; Kathleen Agosta; Agneta Andersson; Peter Haglund; Per Liljelind; Alyse Hegmans; Liisa M. Jantunen; Olle Nygren; Justen Poole; Matyas Ripszam; Mats Tysklind