Justin B. Runyon
United States Forest Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin B. Runyon.
Global Change Biology | 2016
Laura A. Burkle; Justin B. Runyon
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant-pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species-specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.
PLOS ONE | 2015
Curtis A. Gray; Justin B. Runyon; Michael J. Jenkins; Andrew D. Giunta
The tree-killing mountain pine beetle (Dendroctonus ponderosae Hopkins) is an important disturbance agent of western North American forests and recent outbreaks have affected tens of millions of hectares of trees. Most western North American pines (Pinus spp.) are hosts and are successfully attacked by mountain pine beetles whereas a handful of pine species are not suitable hosts and are rarely attacked. How pioneering females locate host trees is not well understood, with prevailing theory involving random landings and/or visual cues. Here we show that female mountain pine beetles orient toward volatile organic compounds (VOCs) from host limber pine (Pinus flexilis James) and away from VOCs of non-host Great Basin bristlecone pine (Pinus longaeva Bailey) in a Y-tube olfactometer. When presented with VOCs of both trees, females overwhelmingly choose limber pine over Great Basin bristlecone pine. Analysis of VOCs collected from co-occurring limber and Great Basin bristlecone pine trees revealed only a few quantitative differences. Noticeable differences included the monoterpenes 3-carene and D-limonene which were produced in greater amounts by host limber pine. We found no evidence that 3-carene is important for beetles when selecting trees, it was not attractive alone and its addition to Great Basin bristlecone pine VOCs did not alter female selection. However, addition of D-limonene to Great Basin bristlecone pine VOCs disrupted the ability of beetles to distinguish between tree species. When presented alone, D-limonene did not affect behavior, suggesting that the response is mediated by multiple compounds. A better understanding of host selection by mountain pine beetles could improve strategies for managing this important forest insect. Moreover, elucidating how Great Basin bristlecone pine escapes attack by mountain pine beetles could provide insight into mechanisms underlying the incredible longevity of this tree species.
Current opinion in insect science | 2017
Mary A Jamieson; Laura A. Burkle; Jessamyn S. Manson; Justin B. Runyon; Amy M. Trowbridge; Joseph Zientek
Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant chemistry and, in turn, ecological interactions among plants, herbivores, and pollinators. Recent studies reveal the complex nature of understanding global change effects on plant secondary metabolites and plant-insect interactions. Nonetheless, these studies indicate that phytochemistry mediates insect responses to environmental change. Future research on the chemical ecology of plant-insect interactions will provide critical insight into the ecological effects of climate change and other anthropogenic disturbances. We recommend greater attention to investigations examining interactive effects of multiple environmental change factors in addition to chemically mediated plant-pollinator interactions, given limited research in these areas.
New Phytologist | 2016
Deidre M. Jaeger; Justin B. Runyon; Bryce A. Richardson
Volatile organic compounds (VOCs) play important roles in the environmental adaptation and fitness of plants. Comparison of the qualitative and quantitative differences in VOCs among closely related taxa and assessing the effects of environment on their emissions are important steps to deducing VOC function and evolutionary importance. Headspace VOCs from five taxa of sagebrush (Artemisia, subgenus Tridentatae) growing in two common gardens were collected and analyzed using GC-MS. Of the 74 total VOCs emitted, only 15 were needed to segregate sagebrush taxa using Random Forest analysis with a low error of 4%. All but one of these 15 VOCs showed qualitative differences among taxa. Ordination of results showed strong clustering that reflects taxonomic classification. Random Forest identified five VOCs that classify based on environment (2% error), which do not overlap with the 15 VOCs that segregated taxa. We show that VOCs can discriminate closely related species and subspecies of Artemisia, which are difficult to define using molecular markers or morphology. Thus, it appears that changes in VOCs either lead the way or follow closely behind speciation in this group. Future research should explore the functions of VOCs, which could provide further insights into the evolution of sagebrushes.
Applications in Plant Sciences | 2017
Laura A. Burkle; Justin B. Runyon
As diverse environmental changes continue to influence the structure and function of plant–pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that floral VOCs hold substantial promise for better understanding and predicting the effects of environmental change on plant–pollinator interactions. Until recently, few ecologists were employing chemical approaches to investigate mechanisms by which components of environmental change may disrupt these essential mutualisms. In an attempt to make these approaches more accessible, we summarize the main field, laboratory, and statistical methods involved in capturing, quantifying, and analyzing floral VOCs in the context of changing environments. We also highlight some outstanding questions that we consider to be highly relevant to making progress in this field.
New Phytologist | 2018
William Glenny; Justin B. Runyon; Laura A. Burkle
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were measured from individuals of four forb species subjected to drought or normal water availability, and elevated or ambient concentrations of CO2 in a factorial design. Pollinator visitation rates and community composition were observed in single-species and multi-species forb assemblages. Drought decreased floral visual traits and pollinator visitation rates but increased volatile organic compound (VOC) emissions, whereas elevated CO2 positively affected floral visual traits, VOC emissions and pollinator visitation rates. There was little evidence of interactive effects of drought and CO2 on floral traits and pollinator visitation. Interestingly, the effects of climate treatments on pollinator visitation depended on whether plants were in single- or multi-species assemblages. Components of climate change altered floral traits and pollinator visitation, but effects were modulated by plant community context. Investigating the response of floral traits, including VOCs, and context-dependency of pollinator attraction provides additional insights and may aid in understanding the overall effects of climate change on plant-pollinator interactions.
Ecology and Evolution | 2018
Dean E. Pearson; Yvette K. Ortega; Justin B. Runyon; Jack L. Butler
Linked Article: https://doi.org/10.1002/ece3.3964
Communications Biology | 2018
Brian V. Brown; Art Borkent; Peter H. Adler; Dalton De Souza Amorim; Kevin N. Barber; Daniel J. Bickel; Stéphanie Boucher; Scott E. Brooks; John F. Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John E. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John M. Hash; Martin Hauser; Heikki Hippa; Sergio Ibáñez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery A. Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung
Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first verifiable basis for diversity of a major group of insects at a single site in the tropics. In total 73 families were present, all of which were studied to the species level, providing potentially complete coverage of all families of the order likely to be present at the site. Even so, extrapolations based on our data indicate that with further sampling, the actual total for the site could be closer to 8000 species. Efforts to completely sample a site, although resource-intensive and time-consuming, are needed to better ground estimations of world biodiversity based on limited sampling.Brian Brown et al. report the results of the Zurquí All Diptera Biodiversity Inventory project, one of the largest efforts to date to directly assess species richness of a megadiverse order of insects. The authors identified 41,001 flies to 4332 species, including 73 of the worlds 160 Diptera families.
Environmental Entomology | 2016
Andrew D. Giunta; Justin B. Runyon; Michael J. Jenkins; Michaela Teich
Abstract Mass attack by tree-killing bark beetles (Curculionidae: Scolytinae) brings about large chemical changes in host trees that can have important ecological consequences. For example, mountain pine beetle (Dendroctonus ponderosae Hopkins) attack increases emission of terpenes by lodgepole pine (Pinus contorta Dougl. ex Loud.), affecting foliage flammability with consequences for wildfires. In this study, we measured chemical changes to Douglas-fir (Pseudotsuga menziesii var. glauca (Mirb.) Franco) foliage in response to attack by Douglas-fir beetles (Dendroctonus pseudotsugae Hopkins) as trees die and crowns transitioned from green/healthy, to green-infested (year of attack), to yellow (year after attack), and red (2 yr after attack). We found large differences in volatile and within-needle terpene concentrations among crown classes and variation across a growing season. In general, emissions and concentrations of total and individual terpenes were greater for yellow and red needles than green needles. Douglas-fir beetle attack increased emissions and concentrations of terpene compounds linked to increased tree flammability in other conifer species and compounds known to attract beetles (e.g., α-pinene, camphene, and D-limonene). There was little relationship between air temperature or within-needle concentrations of terpenes and emission of terpenes, suggesting that passive emission of terpenes (e.g., from dead foliage) does not fully explain changes in volatile emissions. The potential physiological causes and ecological consequences of these bark beetle-associated chemical changes are discussed.
Arthropod-plant Interactions | 2016
Justin B. Runyon; Jennifer L. Birdsall
Inducible plant defenses—those produced in response to herbivore feeding—are thought to have evolved as a cost-saving tactic that allows plants to enact defenses only when needed. The costs of defense can be significant, and loss of plant fitness due to commitment of resources to induced defenses could affect plant populations and play a role in determining the success or failure of weed biocontrol. We used methyl jasmonate (MeJA) to experimentally induce defenses without herbivores in invasive houndstongue plants (Cynoglossum officinale L.) in the field and measured resulting growth and fitness (plant size, seed number, and seed weight). MeJA-treated plants emitted large amounts of plant volatiles and produced leaves with twice as many trichomes as untreated plants. Plants with activated defenses had fewer leaves, were smaller, and produced nutlets that weighed less than plants not investing in defenses. These data indicate that herbivore-induced defenses are costly for houndstongue plants in their invaded range and represent significant indirect costs of herbivory beyond direct feeding damage (e.g., loss of photosynthetic tissue). Notably, the magnitude of defenses elicited upon feeding varies greatly by herbivore species and a better understanding of the costs of defense could help us predict which potential biocontrol herbivores are most likely to be effective.