Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin C. Biffinger is active.

Publication


Featured researches published by Justin C. Biffinger.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging.

Xiaocheng Jiang; Jin-Song Hu; Lisa A. Fitzgerald; Justin C. Biffinger; Ping Xie; Bradley R. Ringeisen; Charles M. Lieber

Microbial fuel cells (MFCs) represent a promising approach for sustainable energy production as they generate electricity directly from metabolism of organic substrates without the need for catalysts. However, the mechanisms of electron transfer between microbes and electrodes, which could ultimately limit power extraction, remain controversial. Here we demonstrate optically transparent nanoelectrodes as a platform to investigate extracellular electron transfer in Shewanella oneidensis MR-1, where an array of nanoholes precludes or single window allows for direct microbe-electrode contacts. Following addition of cells, short-circuit current measurements showed similar amplitude and temporal response for both electrode configurations, while in situ optical imaging demonstrates that the measured currents were uncorrelated with the cell number on the electrodes. High-resolution imaging showed the presence of thin, 4- to 5-nm diameter filaments emanating from cell bodies, although these filaments do not appear correlated with current generation. Both types of electrodes yielded similar currents at longer times in dense cell layers and exhibited a rapid drop in current upon removal of diffusible mediators. Reintroduction of the original cell-free media yielded a rapid increase in current to ∼80% of original level, whereas imaging showed that the positions of > 70% of cells remained unchanged during solution exchange. Together, these measurements show that electron transfer occurs predominantly by mediated mechanism in this model system. Last, simultaneous measurements of current and cell positions showed that cell motility and electron transfer were inversely correlated. The ability to control and image cell/electrode interactions down to the single-cell level provide a powerful approach for advancing our fundamental understanding of MFCs.


Bioelectrochemistry | 2011

Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants.

Alessandro A. Carmona-Martínez; Falk Harnisch; Lisa A. Fitzgerald; Justin C. Biffinger; Bradley R. Ringeisen; Uwe Schröder

Shewanella is frequently used as a model microorganism for microbial bioelectrochemical systems. In this study, we used cyclic voltammetry (CV) to investigate extracellular electron transfer mechanisms from S. oneidensis MR-1 (WT) and five deletion mutants: membrane bound cytochrome (∆mtrC/ΔomcA), transmembrane pili (ΔpilM-Q, ΔmshH-Q, and ΔpilM-Q/ΔmshH-Q) and flagella (∆flg). We demonstrate that the formal potentials of mediated and direct electron transfer sites of the derived biofilms can be gained from CVs of the respective biofilms recorded at bioelectrocatlytic (i.e. turnover) and lactate depleted (i.e. non-turnover) conditions. As the biofilms possess only a limited bioelectrocatalytic activity, an advanced data processing procedure, using the open-source software SOAS, was applied. The obtained results indicate that S. oneidensis mutants used in this study are able to bypass hindered direct electron transfer by alternative redox proteins as well as self-mediated pathways.


Biosensors and Bioelectronics | 2008

The influence of acidity on microbial fuel cells containing Shewanella oneidensis

Justin C. Biffinger; Jeremy J. Pietron; Orianna Bretschger; Lloyd J. Nadeau; Glenn R. Johnson; Cynthia Williams; Kenneth H. Nealson; Bradley R. Ringeisen

Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and nanoporous polycarbonate membranes with MR-1 or DSP10 cultures generated >8W/m(3) and approximately 400muA between pH 6-7. The DSP10 strain significantly outperformed MR-1 at neutral pH but underperformed at pH 5. Higher concentrations of DSP10 were sustained at pH 7 relative to that of MR-1, whereas at pH 5 this trend was reversed indicating that cell count was not solely responsible for the observed differences in current. S. oneidensis MR-1 was determined to be more suitable than DSP10 for MFCs with elevated acidity levels. The concentration of riboflavin in the bacterial cultures was reduced significantly at pH 5 for DSP10, as determined by high performance liquid chromatography (HPLC) of the filter sterilized growth media. In addition, these results suggest that mediator biosynthesis and not solely bacterial concentration plays a significant role in current output from S. oneidensis containing MFCs.


Biotechnology and Bioengineering | 2009

Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.

Justin C. Biffinger; Ricky Ray; Brenda J. Little; Lisa A. Fitzgerald; Meghann Ribbens; Steven E. Finkel; Bradley R. Ringeisen

Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high‐throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR‐1 to carbon source (glucose or lactate) utilization, culture conditions, and biofilm coverage over 250 h. Lactate induced an immediate current response from S. oneidensis MR‐1, with both air‐exposed and anaerobic anodes throughout the duration of the experiments. Glucose was initially utilized for current output by MR‐1 when cultured and maintained in the presence of air. However, after repeated additions of glucose, the current output from the MFC decreased substantially while viable planktonic cell counts and biofilm coverage remained constant suggesting that extracellular electron transfer pathways were being inhibited. Shewanella maintained under an anaerobic atmosphere did not utilize glucose consistent with literature precedents. Operation of the VBSA permitted data collection from nine simultaneous S. oneidensis MR‐1 MFC experiments in which each experiment was able to demonstrate organic carbon source utilization and oxygen dependent biofilm formation on a carbon electrode. These data provide the first direct evidence of complex cellular responses to electron donor and oxygen tension by Shewanella in an operating MFC at select time points. Biotechnol. Bioeng. 2009;103: 524–531. Published 2009 Wiley Periodicals, Inc.


Biotechnology and Bioengineering | 2009

Characterization of electrochemically active bacteria utilizing a high‐throughput voltage‐based screening assay

Justin C. Biffinger; Meghann Ribbens; Bradley R. Ringeisen; Jeremy J. Pietron; Steven E. Finkel; Kenneth H. Nealson

Metal reduction assays are traditionally used to select and characterize electrochemically active bacteria (EAB) for use in microbial fuel cells (MFCs). However, correlating the ability of a microbe to generate current from an MFC to the reduction of metal oxides has not been definitively established in the literature. As these metal reduction assays may not be generally reliable, here we describe a four‐ to nine‐well prototype high throughput voltage‐based screening assay (VBSA) designed using MFC engineering principles and a universal cathode. Bacterial growth curves for Shewanella oneidensis strains DSP10 and MR‐1 were generated directly from changes in open circuit voltage and current with five percent deviation calculated between each well. These growth curves exhibited a strong correlation with literature doubling times for Shewanella indicating that the VBSA can be used to monitor distinct fundamental properties of EAB life cycles. In addition, eight different organic electron donors (acetate, lactate, citrate, fructose, glucose, sucrose, soluble starch, and agar) were tested with S. oneidensis MR‐1 in anode chambers exposed to air. Under oxygen exposure, we found that current was generated in direct response to additions of acetate, lactate, and glucose. Biotechnol. Bioeng. 2009;102: 436–444.


Nano Letters | 2014

Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells

Xiaocheng Jiang; Jin-Song Hu; Alexander M. Lieber; Charles S. Jackan; Justin C. Biffinger; Lisa A. Fitzgerald; Bradley R. Ringeisen; Charles M. Lieber

Microbial fuel cells (MFCs) have been the focus of substantial research interest due to their potential for long-term, renewable electrical power generation via the metabolism of a broad spectrum of organic substrates, although the low power densities have limited their applications to date. Here, we demonstrate the potential to improve the power extraction by exploiting biogenic inorganic nanoparticles to facilitate extracellular electron transfer in MFCs. Simultaneous short-circuit current recording and optical imaging on a nanotechnology-enabled platform showed substantial current increase from Shewanella PV-4 after the formation of cell/iron sulfide nanoparticle aggregates. Detailed characterization of the structure and composition of the cell/nanoparticle interface revealed crystalline iron sulfide nanoparticles in intimate contact with and uniformly coating the cell membrane. In addition, studies designed to address the fundamental mechanisms of charge transport in this hybrid system showed that charge transport only occurred in the presence of live Shewanella, and moreover demonstrated that the enhanced current output can be attributed to improved electron transfer at cell/electrode interface and through the cellular-networks. Our approach of interconnecting and electrically contacting bacterial cells through biogenic nanoparticles represents a unique and promising direction in MFC research and has the potential to not only advance our fundamental knowledge about electron transfer processes in these biological systems but also overcome a key limitation in MFCs by constructing an electrically connected, three-dimensional cell network from the bottom-up.


Water Research | 2016

Granular biochar compared with activated carbon for wastewater treatment and resource recovery.

Tyler M. Huggins; Alexander Haeger; Justin C. Biffinger; Zhiyong Jason Ren

Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery.


Bioresource Technology | 2015

Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells

Tyler M. Huggins; Jeremy J. Pietron; Heming Wang; Zhiyong Jason Ren; Justin C. Biffinger

Graphitic biochar (BC) was generated using high temperature gasification and alkaline post-treatment (BCw) of wood-based biomass. The BCw was evaluated as a manganese oxide electrocatalytic support (MnO/BCw) and microbial fuel cell (MFC) air cathode. Nano-structured MnO2 crystals were successfully immobilized on biomass-based graphitic sheets and characterized using physical, chemical, and electrochemical analyses. Cyclic voltammetry of MnO/BCw/Nafion inks showed electrochemical features typical of β-MnO2 with a current density of 0.9 mA cm(-2). BC showed satisfactory maximum power densities of 146.7 mW m(-2) (BCw) and 187.8 W m(-2) (MnO/BCw), compared with Vulcan Carbon (VC) (156.8 mW m(-2)) and manganese oxide VC composites (MnO/VC) (606.1 mW m(-2)). These materials were also tested as oxygen reduction reaction (ORR) catalysts for single chamber MFCs inoculated with anaerobic sludge. Our results demonstrate that BC can serve as an effective, low cost, and scalable material for MFC application.


Nature Communications | 2013

Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1

Xiaocheng Jiang; Jin-Song Hu; Emily R. Petersen; Lisa A. Fitzgerald; Charles S. Jackan; Alexander M. Lieber; Bradley R. Ringeisen; Charles M. Lieber; Justin C. Biffinger

Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms.


Bioresource Technology | 2011

The utility of Shewanella japonica for microbial fuel cells

Justin C. Biffinger; Lisa A. Fitzgerald; Ricky Ray; Brenda J. Little; Stephen E. Lizewski; Emily R. Petersen; Bradley R. Ringeisen; Wesley C. Sanders; Paul E. Sheehan; Jeremy J. Pietron; Jeffrey W. Baldwin; Lloyd J. Nadeau; Glenn R. Johnson; Meghann Ribbens; Steven E. Finkel; Kenneth H. Nealson

Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.

Collaboration


Dive into the Justin C. Biffinger's collaboration.

Top Co-Authors

Avatar

Bradley R. Ringeisen

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Fitzgerald

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brenda J. Little

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. K. Wu

Southern Oregon University

View shared research outputs
Top Co-Authors

Avatar

Emily R. Petersen

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeremy J. Pietron

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kathleen D. Cusick

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lloyd J. Nadeau

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ricky Ray

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Barlow

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge