Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Courcelle is active.

Publication


Featured researches published by Justin Courcelle.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination

Justin Courcelle; Philip C. Hanawalt

Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. However, unlike conjugation, this latter process also requires the function of the nucleotide excision repair genes. Following UV irradiation, the recovery of DNA replication requires uvrA and uvrC, as well as recA, recF, and recR. The rec genes appear to be required to protect and maintain replication forks that are arrested at DNA lesions, based on the extensive degradation of the nascent DNA that occurs in their absence. The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.


Mutation Research\/genetic Toxicology | 1993

Thymine ring saturation and fragmentation products : lesion bypass, misinsertion and implications for mutagenesis

Janet Evans; Margaret Maccabee; Zafer Hatahet; Justin Courcelle; Richard Bockrath; Hirioshi Ide; Susan S. Wallace

We have used thymine glycol and dihydrothymine as representative ring saturation products resulting from free-radical interaction with DNA pyrimidines, and urea glycosides and beta-ureidoisobutyric acid (UBA) as models for pyrimidine-ring fragmentation products. We have shown that thymine glycol and the ring-fragmentation products urea and beta-ureidoisobutyric acid, as well as abasic sites, are strong blocks to DNA polymerases in vitro. In contrast, dihydrothymine is not a block to any of the polymerases tested. For thymine glycol, termination sites were observed opposite the putative lesions, whereas for the ring-fragmentation products, the termination sites were primarily one base prior to the lesion. These and other data have suggested that thymine glycol codes for an A, and that a base is stably inserted opposite the damage, whereas when a base is inserted opposite the non-coding lesions, it is removed by the 3-->5 exonuclease activity of DNA polymerase I. Despite their efficiency as blocking lesions, thymine glycol, urea and UBA can be bypassed at low frequency in certain specific sequence contexts. When the model lesions were introduced individually into single-stranded biologically active DNA, we found that thymine glycol, urea, beta-ureidoisobutyric acid, and abasic sites were all lethal lesions having an activation efficiency of 1, whereas dihydrothymine was not. Thus the in vitro studies predicted the in vivo results. When the survival of biologically active single-stranded DNA was examined in UV-induced Escherichia coli cells where the block to replication was released, no increase in survival was observed for DNA containing urea or abasic sites, suggesting inefficient bypass of these lesions. In contrast, beta-ureidoisobutyric acid survival was slightly enhanced, and transfecting DNA containing thymine glycols was significantly reactivated. When mutation induction by unique lesions was measured using f1-K12 hybrid DNA containing an E. coli target gene, thymine glycols and dihydrothymine were found to be inefficient as premutagenic lesions, suggesting that in vivo, as in vitro, they primarily code for A. In contrast, urea and beta-ureidoisobutyric acid were efficient premutagenic lesions, with beta-ureidoisobutyric acid being about 4-5-fold more effective than urea glycosides, which have approximately the same rate of mutation induction as abasic sites from purines. Sequence analysis of the mutations resulting from these ring-fragmentation products shows that the mutations produced are both lesion and sequence context dependent. The possible roles that bypass efficiency and lesion-directed misinsertion might play in mutagenesis are discussed.


Journal of Bacteriology | 2005

Nucleotide Excision Repair or Polymerase V-Mediated Lesion Bypass Can Act To Restore UV-Arrested Replication Forks in Escherichia coli

Charmain T. Courcelle; Jerilyn J. Belle; Justin Courcelle

Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions that determine when each process is recruited to the arrested fork. We show here that at early times following UV irradiation, the recovery of DNA synthesis occurs through nucleotide excision repair of the lesion. In the absence of repair or when the repair capacity of the cell has been exceeded, translesion synthesis by polymerase V (Pol V) allows DNA synthesis to resume and is required to protect the arrested replication fork from degradation. Pol II and Pol IV do not contribute detectably to survival, mutagenesis, or restoration of DNA synthesis, suggesting that, in vivo, these polymerases are not functionally redundant with Pol V at UV-induced lesions. We discuss a model in which cells first use DNA repair to process replication-arresting UV lesions before resorting to mutagenic pathways such as translesion DNA synthesis to bypass these impediments to replication progression.


Journal of Virology | 2001

Requirement for Uracil-DNA Glycosylase during the Transition to Late-Phase Cytomegalovirus DNA Replication

Charmain T. Courcelle; Justin Courcelle; Mark N. Prichard; Edward S. Mocarski

ABSTRACT Cytomegalovirus gene UL114, a homolog of mammalian uracil-DNA glycosylase (UNG), is required for efficient viral DNA replication. In quiescent fibroblasts, UNG mutant virus replication is delayed for 48 h and follows the virus-induced expression of cellular UNG. In contrast, mutant virus replication proceeds without delay in actively growing fibroblasts that express host cell UNG. In the absence of viral or host cell UNG expression, mutant virus fails to proceed to late-phase DNA replication, characterized by rapid DNA amplification. The data suggest that uracil incorporated early during wild-type viral DNA replication must be removed by virus or host UNG prior to late-phase amplification and encapsidation into progeny virions. The process of uracil incorporation and excision may introduce strand breaks to facilitate the transition from early-phase replication to late-phase amplification.


Journal of Biological Chemistry | 2006

RuvABC Is Required to Resolve Holliday Junctions That Accumulate following Replication on Damaged Templates in Escherichia coli

Janet R. Donaldson; Charmain T. Courcelle; Justin Courcelle

RuvABC is a complex that promotes branch migration and resolution of Holliday junctions. Although ruv mutants are hypersensitive to UV irradiation, the molecular event(s) that necessitate RuvABC processing in vivo are not known. Here, we used a combination of two-dimensional gel analysis and electron microscopy to reveal that although ruvAB and ruvC mutants are able to resume replication following arrest at UV-induced lesions, molecules that replicate in the presence of DNA damage accumulate unresolved Holliday junctions. The failure to resolve the Holliday junctions on the fully replicated molecules correlates with a delayed loss of genomic integrity that is likely to account for the loss of viability in these cells. The strand exchange intermediates that accumulate in ruv mutants are distinct from those observed at arrested replication forks and are not subject to resolution by RecG. These results indicate that the Holliday junctions observed in ruv mutants are intermediates of a repair pathway that is distinct from that of the recovery of arrested replication forks. A model is proposed in which RuvABC is required to resolve junctions that arise during the repair of a subset of nonarresting lesions after replication has passed through the template.


The EMBO Journal | 2007

Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function

Olga Koroleva; Nodar Makharashvili; Charmain T. Courcelle; Justin Courcelle; Sergey Korolev

RecF, together with RecO and RecR, belongs to a ubiquitous group of recombination mediators (RMs) that includes eukaryotic proteins such as Rad52 and BRCA2. RMs help maintain genome stability in the presence of DNA damage by loading RecA‐like recombinases and displacing single‐stranded DNA‐binding proteins. Here, we present the crystal structure of RecF from Deinococcus radiodurans. RecF exhibits a high degree of structural similarity with the head domain of Rad50, but lacks its long coiled‐coil region. The structural homology between RecF and Rad50 is extensive, encompassing the ATPase subdomain and the so‐called ‘Lobe II’ subdomain of Rad50. The pronounced structural conservation between bacterial RecF and evolutionarily diverged eukaryotic Rad50 implies a conserved mechanism of DNA binding and recognition of the boundaries of double‐stranded DNA regions. The RecF structure, mutagenesis of conserved motifs and ATP‐dependent dimerization of RecF are discussed with respect to its role in promoting presynaptic complex formation at DNA damage sites.


Radiation Research | 2007

RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli.

Kin-Hoe Chow; Justin Courcelle

Abstract Chow, K-H. and Courcelle, J. RecBCD and RecJ/RecQ Initiate DNA Degradation on Distinct Substrates in UV-Irradiated Escherichia coli. Radiat. Res. 168, 499–506 (2007). After UV irradiation, recA mutants fail to recover replication, and a dramatic and nearly complete degradation of the genomic DNA occurs. Although the RecBCD helicase/nuclease complex is known to mediate this catastrophic DNA degradation, it is not known how or where this degradation is initiated. Previous studies have speculated that RecBCD targets and initiates degradation from the nascent DNA at replication forks arrested by DNA damage. To test this question, we examined which enzymes were responsible for the degradation of genomic DNA and the nascent DNA in UV-irradiated recA cells. We show here that, although RecBCD degrades the genomic DNA after UV irradiation, it does not target the nascent DNA at arrested replication forks. Instead, we observed that the nascent DNA at arrested replication forks in recA cultures is degraded by RecJ/RecQ, similar to what occurs in wild-type cultures. These findings indicate that the genomic DNA degradation and nascent DNA degradation in UV-irradiated recA mutants are mediated separately through RecBCD and RecJ/RecQ, respectively. In addition, they demonstrate that RecBCD initiates degradation at a site(s) other than the arrested replication fork directly.


Journal of Bacteriology | 2009

Nucleotide Excision Repair Is a Predominant Mechanism for Processing Nitrofurazone-Induced DNA Damage in Escherichia coli

Katherine R. Ona; Charmain T. Courcelle; Justin Courcelle

Nitrofurazone is reduced by cellular nitroreductases to form N(2)-deoxyguanine (N(2)-dG) adducts that are associated with mutagenesis and lethality. Much attention recently has been given to the role that the highly conserved polymerase IV (Pol IV) family of polymerases plays in tolerating adducts induced by nitrofurazone and other N(2)-dG-generating agents, yet little is known about how nitrofurazone-induced DNA damage is processed by the cell. In this study, we characterized the genetic repair pathways that contribute to survival and mutagenesis in Escherichia coli cultures grown in the presence of nitrofurazone. We find that nucleotide excision repair is a primary mechanism for processing damage induced by nitrofurazone. The contribution of translesion synthesis to survival was minor compared to that of nucleotide excision repair and depended upon Pol IV. In addition, survival also depended on both the RecF and RecBCD pathways. We also found that nitrofurazone acts as a direct inhibitor of DNA replication at higher concentrations. We show that the direct inhibition of replication by nitrofurazone occurs independently of DNA damage and is reversible once the nitrofurazone is removed. Previous studies that reported nucleotide excision repair mutants that were fully resistant to nitrofurazone used high concentrations of the drug (200 microM) and short exposure times. We demonstrate here that these conditions inhibit replication but are insufficient in duration to induce significant levels of DNA damage.


Journal of Bacteriology | 2007

Inactivation of the DnaB Helicase Leads to the Collapse and Degradation of the Replication Fork: a Comparison to UV-Induced Arrest

Jerilyn J. Belle; Andrew Casey; Charmain T. Courcelle; Justin Courcelle

Replication forks face a variety of structurally diverse impediments that can prevent them from completing their task. The mechanism by which cells overcome these hurdles is likely to vary depending on the nature of the obstacle and the strand in which the impediment is encountered. Both UV-induced DNA damage and thermosensitive replication proteins have been used in model systems to inhibit DNA replication and characterize the mechanism by which it recovers. In this study, we examined the molecular events that occur at replication forks following inactivation of a thermosensitive DnaB helicase and found that they are distinct from those that occur following arrest at UV-induced DNA damage. Following UV-induced DNA damage, the integrity of replication forks is maintained and protected from extensive degradation by RecA, RecF, RecO, and RecR until replication can resume. By contrast, inactivation of DnaB results in extensive degradation of the nascent and leading-strand template DNA and a loss of replication fork integrity as monitored by two-dimensional agarose gel analysis. The degradation that occurs following DnaB inactivation partially depends on several genes, including recF, recO, recR, recJ, recG, and xonA. Furthermore, the thermosensitive DnaB allele prevents UV-induced DNA degradation from occurring following arrest even at the permissive temperature, suggesting a role for DnaB prior to loading of the RecFOR proteins. We discuss these observations in relation to potential models for both UV-induced and DnaB(Ts)-mediated replication inhibition.


BioMed Research International | 2002

Answering the Call: Coping with DNA Damage at the Most Inopportune Time

David J. Crowley; Justin Courcelle

DNA damage incurred during the process of chromosomal replication has a particularly high possibility of resulting in mutagenesis or lethality for the cell. The SOS response of Escherichia coli appears to be well adapted for this particular situation and involves the coordinated up-regulation of genes whose products center upon the tasks of maintaining the integrity of the replication fork when it encounters DNA damage, delaying the replication process (a DNA damage checkpoint), repairing the DNA lesions or allowing replication to occur over these DNA lesions, and then restoring processive replication before the SOS response itself is turned off. Recent advances in the fields of genomics and biochemistry has given a much more comprehensive picture of the timing and coordination of events which allow cells to deal with potentially lethal or mutagenic DNA lesions at the time of chromosomal replication.

Collaboration


Dive into the Justin Courcelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kin-Hoe Chow

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Janet R. Donaldson

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Jerilyn J. Belle

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Jessica M. Cole

Portland State University

View shared research outputs
Top Co-Authors

Avatar

Brian M. Wendel

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge