Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin D. Yeakel is active.

Publication


Featured researches published by Justin D. Yeakel.


Journal of Mammalogy | 2012

Tools for quantifying isotopic niche space and dietary variation at the individual and population level.

Seth D. Newsome; Justin D. Yeakel; Patrick V. Wheatley; M. Tim Tinker

Abstract Ecologists are increasingly using stable isotope analysis to inform questions about variation in resource and habitat use from the individual to community level. In this study we investigate data sets from 2 California sea otter (Enhydra lutris nereis) populations to illustrate the advantages and potential pitfalls of applying various statistical and quantitative approaches to isotopic data. We have subdivided these tools, or metrics, into 3 categories: IsoSpace metrics, stable isotope mixing models, and DietSpace metrics. IsoSpace metrics are used to quantify the spatial attributes of isotopic data that are typically presented in bivariate (e.g., &dgr;13C versus &dgr;15N) 2-dimensional space. We review IsoSpace metrics currently in use and present a technique by which uncertainty can be included to calculate the convex hull area of consumers or prey, or both. We then apply a Bayesian-based mixing model to quantify the proportion of potential dietary sources to the diet of each sea otter population and compare this to observational foraging data. Finally, we assess individual dietary specialization by comparing a previously published technique, variance components analysis, to 2 novel DietSpace metrics that are based on mixing model output. As the use of stable isotope analysis in ecology continues to grow, the field will need a set of quantitative tools for assessing isotopic variance at the individual to community level. Along with recent advances in Bayesian-based mixing models, we hope that the IsoSpace and DietSpace metrics described here will provide another set of interpretive tools for ecologists.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet.

Justin D. Yeakel; Nigel C. Bennett; Paul L. Koch; Nathaniel J. Dominy

The diets of Australopithecus africanus and Paranthropus robustus are hypothesized to have included C4 plants, such as tropical grasses and sedges, or the tissues of animals which themselves consumed C4 plants. Yet inferences based on the craniodental morphology of A. africanus and P. robustus indicate a seasonal diet governed by hard, brittle foods. Such mechanical characteristics are incompatible with a diet of grasses or uncooked meat, which are too tough for efficient mastication by flat, low-cusped molars. This discrepancy, termed the C4 conundrum, has led to the speculation that C4 plant underground storage organs (USOs) were a source of nutrition for hominin species. We test this hypothesis by examining the isotopic ecology of African mole rats, which consume USOs extensively. We measured δ18O and δ13C of enamel and bone apatite from fossil and modern species distributed across a range of habitats. We show that δ18O values vary little and that δ13C values vary along the C3 to C4/CAM-vegetative axis. Relatively high δ13C values exist in modern Cryptomys hottentotus natalensis and Cryptomys spp. recovered from hominin-bearing deposits. These values overlap those reported for A. africanus and P. robustus and we conclude that the USO hypothesis for hominin diets retains certain plausibility.


arXiv: Populations and Evolution | 2013

The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe

Justin D. Yeakel; Paulo R. Guimarães; Hervé Bocherens; Paul L. Koch

Species interactions form food webs, impacting community structure and, potentially, ecological dynamics. It is likely that global climatic perturbations that occur over long periods of time have a significant influence on species interaction patterns. Here, we integrate stable isotope analysis and network theory to reconstruct patterns of trophic interactions for six independent mammalian communities that inhabited mammoth steppe environments spanning western Europe to eastern Alaska (Beringia) during the Late Pleistocene. We use a Bayesian mixing model to quantify the contribution of prey to the diets of local predators, and assess how the structure of trophic interactions changed across space and the Last Glacial Maximum (LGM), a global climatic event that severely impacted mammoth steppe communities. We find that large felids had diets that were more constrained than those of co-occurring predators, and largely influenced by an increase in Rangifer abundance after the LGM. Moreover, the structural organization of Beringian and European communities strongly differed: compared with Europe, species interactions in Beringian communities before—and possibly after—the LGM were highly modular. We suggest that this difference in modularity may have been driven by the geographical insularity of Beringian communities.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Collapse of an ecological network in Ancient Egypt.

Justin D. Yeakel; Mathias M. Pires; Lars Rudolf; Nathaniel J. Dominy; Paul L. Koch; Paulo R. Guimarães; Thilo Gross

Significance The composition of animal communities directly impacts the stability of ecosystems. Here, we use historical information of species extinctions in Egypt over 6,000 years to reconstruct predator–prey interactions and determine to what extent observed changes in species composition influence predictions of community stability. Our study reveals that the roles of species and the stability of the community have fundamentally changed throughout the Holocene, and provides compelling evidence that local dynamic stability is informative of species persistence over time. The dynamics of ecosystem collapse are fundamental to determining how and why biological communities change through time, as well as the potential effects of extinctions on ecosystems. Here, we integrate depictions of mammals from Egyptian antiquity with direct lines of paleontological and archeological evidence to infer local extinctions and community dynamics over a 6,000-y span. The unprecedented temporal resolution of this dataset enables examination of how the tandem effects of human population growth and climate change can disrupt mammalian communities. We show that the extinctions of mammals in Egypt were nonrandom and that destabilizing changes in community composition coincided with abrupt aridification events and the attendant collapses of some complex societies. We also show that the roles of species in a community can change over time and that persistence is predicted by measures of species sensitivity, a function of local dynamic stability. To our knowledge, our study is the first high-resolution analysis of the ecological impacts of environmental change on predator–prey networks over millennial timescales and sheds light on the historical events that have shaped modern animal communities.


Ecology Letters | 2014

Synchronisation and stability in river metapopulation networks

Justin D. Yeakel; Jonathan W. Moore; Paulo R. Guimarães; Marcus A. M. de Aguiar

Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations.


PLOS ONE | 2011

Merging Resource Availability with Isotope Mixing Models: The Role of Neutral Interaction Assumptions

Justin D. Yeakel; Mark Novak; Paulo R. Guimarães; Nathaniel J. Dominy; Paul L. Koch; Eric J. Ward; Jonathan W. Moore; Brice X. Semmens

Background Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predators diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values. Methodology We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predators diet. We test the utility of this method in an intertidal community against independently measured feeding rates. Conclusions Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predators diet cannot be assumed for all species in a system.


Ecology | 2015

Emergent stability in a large, free‐flowing watershed

Jonathan W. Moore; Michael P. Beakes; Holly K. Nesbitt; Justin D. Yeakel; David Patterson; Lisa A. Thompson; Corey C. Phillis; Douglas C. Braun; Corinna Favaro; David Scott; Charmaine Carr-Harris; William I. Atlas

While it is widely recognized that financial stock portfolios can be stabilized through diverse investments, it is also possible that certain habitats can function as natural portfolios that stabilize ecosystem processes. Here we propose and examine the hypothesis that free-flowing river networks act as such portfolios and confer stability through their integration of upstream geological, hydrological, and biological diversity. We compiled a spatially (142 sites) and temporally (1980-present) extensive data set on fisheries, water flows, and temperatures, from sites within one of the largest watersheds in the world that remains without dams on its mainstem, the Fraser River, British Columbia, Canada. We found that larger catchments had more stable fisheries catches, water flows, and water temperatures than smaller catchments. These data provide evidence that free-flowing river networks function as hierarchically nested portfolios with stability as an emergent property. Thus, free-flowing river networks can represent a natural system for buffering variation and extreme events.


Journal of the Royal Society Interface | 2012

Probabilistic patterns of interaction: the effects of link-strength variability on food-web structure

Justin D. Yeakel; Paulo R. Guimarães; Mark Novak; Kena Fox-Dobbs; Paul L. Koch

Patterns of species interactions affect the dynamics of food webs. An important component of species interactions that is rarely considered with respect to food webs is the strengths of interactions, which may affect both structure and dynamics. In natural systems, these strengths are variable, and can be quantified as probability distributions. We examined how variation in strengths of interactions can be described hierarchically, and how this variation impacts the structure of species interactions in predator–prey networks, both of which are important components of ecological food webs. The stable isotope ratios of predator and prey species may be particularly useful for quantifying this variability, and we show how these data can be used to build probabilistic predator–prey networks. Moreover, the distribution of variation in strengths among interactions can be estimated from a limited number of observations. This distribution informs network structure, especially the key role of dietary specialization, which may be useful for predicting structural properties in systems that are difficult to observe. Finally, using three mammalian predator–prey networks (two African and one Canadian) quantified from stable isotope data, we show that exclusion of link-strength variability results in biased estimates of nestedness and modularity within food webs, whereas the inclusion of body size constraints only marginally increases the predictive accuracy of the isotope-based network. We find that modularity is the consequence of strong link-strengths in both African systems, while nestedness is not significantly present in any of the three predator–prey networks.


Evolution | 2014

FUNCTIONAL MORPHOLOGY, STABLE ISOTOPES, AND HUMAN EVOLUTION: A MODEL OF CONSILIENCE

Justin D. Yeakel; Nathaniel J. Dominy; Paul L. Koch; Marc Mangel

Foraging is constrained by the energy within resources and the mechanics of acquisition and assimilation. Thick molar enamel, a character trait differentiating hominins from African apes, is predicted to mitigate the mechanical costs of chewing obdurate foods. The classic expression of hyperthick enamel together with relatively massive molars, termed megadontia, is most evident in Paranthropus, a lineage of hominins that lived about 2.7–1.2 million years ago. Among contemporary primates, thicker molar enamel corresponds with the consumption of stiffer, deformation‐resistant foods, possibly because thicker enamel can better resist cracking under high compressive loads. Accordingly, plant underground storage organs (USOs) are thought to be a central food resource for hominins such as Paranthropus due to their abundance, isotopic composition, and mechanical properties. Here, we present a process‐based model to investigate foraging constraints as a function of energetic demands and enamel wear among human ancestors. Our framework allows us to determine the fitness benefits of megadontia, and to explore under what conditions stiff foods such as USOs are predicted to be chosen as fallback, rather than preferred, resources. Our model predictions bring consilience to the noted disparity between functional interpretations of megadontia and microwear evidence, particularly with respect to Paranthropus boisei.


Frontiers in Ecology and Evolution | 2015

Do Oxygen Isotope Values in Collagen Reflect the Ecology and Physiology of Neotropical Mammals

Brooke E. Crowley; Amanda D. Melin; Justin D. Yeakel; Nathaniel J. Dominy

Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

Collaboration


Dive into the Justin D. Yeakel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul L. Koch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Novak

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean P. Gibert

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter A. H. Westley

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge