Justin Darcy
Southern Illinois University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin Darcy.
Best Practice & Research Clinical Endocrinology & Metabolism | 2017
Andrzej Bartke; Justin Darcy
The interrelationships of growth hormone (GH) actions and aging are complex and incompletely understood. The very pronounced age-related decline in GH secretion together with benefits of GH therapy in individuals with congenital or adult GH deficiency (GHD) prompted interest in GH as an anti-aging agent. However, the benefits of treatment of normal elderly subjects with GH appear to be marginal and counterbalanced by worrisome side effects. In laboratory mice, genetic GH deficiency or resistance leads to a remarkable extension of longevity accompanied by signs of delayed and/or slower aging. Mechanisms believed to contribute to extended longevity of GH-related mutants include improved anti-oxidant defenses, enhanced insulin sensitivity and reduced insulin levels, reduced inflammation and cell senescence, major shifts in mitochondrial function and energy metabolism, and greater stress resistance. Negative association of the somatotropic signaling and GH/insulin-like growth factor 1 (IGF-1)-dependent traits with longevity has also been shown in other mammalian species. In humans, syndromes of GH resistance or deficiency have no consistent effect on longevity, but can provide striking protection from cancer, diabetes and atherosclerosis. More subtle alterations in various steps of GH and IGF-1 signaling are associated with reduced old-age mortality, particularly in women and with improved chances of attaining extremes of lifespan. Epidemiological studies raise a possibility that the relationship of IGF-1 and perhaps also GH levels with human healthy aging and longevity may be biphasic. However, the impact of somatotropic signaling on neoplastic disease is difficult to separate from its impact on aging, and IGF-1 levels exhibit opposite associations with different chronic, age-related diseases.
eLife | 2017
Liou Y. Sun; Yimin Fang; Amit Patki; Jacob J.E. Koopman; David B. Allison; Cristal M. Hill; Michal M. Masternak; Justin Darcy; Jian Wang; Samuel McFadden; Andrzej Bartke
Life-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life. These effects may represent mechanisms responsible for reduced longevity of dwarf mice exposed to GH treatment early in life. Our data suggest that developmental programming of aging importantly contributes to (and perhaps explains) the well documented developmental origins of adult disease. DOI: http://dx.doi.org/10.7554/eLife.24059.001
Experimental Biology and Medicine | 2016
Justin Darcy; Yimin Fang; Cristal M. Hill; Sam McFadden; Liou Y. Sun; Andrzej Bartke
Ames dwarf mice are exceptionally long-lived due to a Prop1 loss of function mutation resulting in deficiency of growth hormone, thyroid-stimulating hormone and prolactin. Deficiency in thyroid-stimulating hormone and growth hormone leads to greatly reduced levels of circulating thyroid hormones and insulin-like growth factor 1, as well as a reduction in insulin secretion. Early life growth hormone replacement therapy in Ames dwarf mice significantly shortens their longevity, while early life thyroxine (T4) replacement therapy does not. Possible mechanisms by which early life growth hormone replacement therapy shortens longevity include deleterious effects on glucose homeostasis and energy metabolism, which are long lasting. A mechanism explaining why early life T4 replacement therapy does not shorten longevity remains elusive. Here, we look for a possible explanation as to why early life T4 replacement therapy does not impact longevity of Ames dwarf mice. We found that early life T4 replacement therapy increased body weight and advanced the age of sexual maturation. We also find that early life T4 replacement therapy does not impact glucose tolerance or insulin sensitivity, and any deleterious effects on oxygen consumption, respiratory quotient and heat production are transient. Lastly, we find that early life T4 replacement therapy has long-lasting effects on bone mineral density and bone mineral content. We suggest that the transient effects on energy metabolism and lack of effects on glucose homeostasis are the reasons why there is no shortening of longevity after early life T4 replacement therapy in Ames dwarf mice.
Adipocyte | 2017
Justin Darcy; Samuel McFadden; Andrzej Bartke
ABSTRACT A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1df) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Yimin Fang; Cristal M. Hill; Justin Darcy; Adriana Reyes-Ordoñez; Edwin Arauz; Samuel McFadden; Chi Zhang; Jared Osland; John Gao; Tian Zhang; Stuart J. Frank; Martin A. Javors; Rong Yuan; John J. Kopchick; Liou Y. Sun; Jie Chen; Andrzej Bartke
Significance In various animal species, including mammals, longevity can be extended by rapamycin, an inhibitor of mTOR (mechanistic target of rapamycin). mTOR acts through two complexes: mTORC1 and mTORC2. Antiaging effects of rapamycin are mediated by suppression of mTORC1, while the role of mTORC2 in aging remains to be elucidated. Here, we report that mTORC2 plays a positive role in regulating longevity via maintenance, or enhancement, of whole-body homeostasis. When mTORC2-mediated homeostasis was disrupted by rapamycin in the remarkably long-lived GHR-KO mice (in which mTORC1 signaling is low, while mTORC2 signaling is elevated), their life span was shortened. Hence, a selective approach toward mTORC1 inhibition without impairing mTORC2 is important in devising a strategy for slowing aging. It is well documented that inhibition of mTORC1 (defined by Raptor), a complex of mechanistic target of rapamycin (mTOR), extends life span, but less is known about the mechanisms by which mTORC2 (defined by Rictor) impacts longevity. Here, rapamycin (an inhibitor of mTOR) was used in GHR-KO (growth hormone receptor knockout) mice, which have suppressed mTORC1 and up-regulated mTORC2 signaling, to determine the effect of concurrently decreased mTORC1 and mTORC2 signaling on life span. We found that rapamycin extended life span in control normal (N) mice, whereas it had the opposite effect in GHR-KO mice. In the rapamycin-treated GHR-KO mice, mTORC2 signaling was reduced without further inhibition of mTORC1 in the liver, muscle, and s.c. fat. Glucose and lipid homeostasis were impaired, and old GHR-KO mice treated with rapamycin lost functional immune cells and had increased inflammation. In GHR-KO MEF cells, knockdown of Rictor, but not Raptor, decreased mTORC2 signaling. We conclude that drastic reduction of mTORC2 plays important roles in impaired longevity in GHR-KO mice via disruption of whole-body homeostasis.
Archive | 2018
Michal M. Masternak; Justin Darcy; Berta Victoria; Andrzej Bartke
Dwarf mice have been studied for many decades, however, the focus of these studies shifted in 1996 when it was shown by Brown-Borg and her coworkers that Ames dwarf (Prop1df) mice are exceptionally long-lived. Since then, Snell dwarf (Pit1dw) and growth hormone receptor knockout (GHR-KO, a.k.a. Laron dwarf) mice were also shown to be exceptionally long-lived, presumably due to their growth hormone (GH)-deficiency or -resistance, respectively. What is of equal importance in these dwarf mice is their extended health span, that is, these animals have a longer period of life lived free of frailty and age-related diseases. This review article focuses on recent studies conducted in these dwarf mice, which concerned brown and white adipose tissue biology, microRNA (miRNA) profiling, as well as early-life dietary and hormonal interventions. Results of these studies identify novel mechanisms linking reduced GH action with extensions of both life span and health span.
Archive | 2018
Andrzej Bartke; Justin Darcy; Rong Yuan
Abstract Dwarf mice are remarkably long-lived. Congenital deficiency of growth hormone, prolactin, and thyroid-stimulating hormone due to mutations at the Pit1 or Prop1 loci, as well as growth hormone resistance due to targeted disruption of the growth hormone receptor gene, lead to major increase in both average and maximal life span. Prolonged longevity of Snell dwarf (Pit1dw), Ames dwarf (Prop1df), and growth hormone receptor knockout mice is associated with a major extension of “health span” and multiple symptoms of delayed aging. Suspected mechanisms of prolonged longevity of hypopituitary and growth hormone (GH)-resistant mice include reduced peripheral levels of insulin and insulin-like growth factor 1 (IGF1), enhanced sensitivity to insulin actions, reduced mechanistic target of rapamycin, particularly the complex 1 signaling, reduced generation of reactive oxygen species, enhanced antioxidant defenses and stress resistance, reduced cell senescence and inflammation, and delayed onset of fatal neoplastic and nonneoplastic disease. Negative correlation of body size, a GH/IGF1-dependent trait, and longevity applies to genetically normal mice and to other species, and there is increasing evidence that somatotropic (GH/IGF1) signaling is involved in the control of human aging and risks of age-related diseases.
Aging | 2018
Xin Wang; Justin Darcy; Chuan Cai; Junfei Jin; Andrzej Bartke; Deliang Cao
Hypopituitary dwarf mice demonstrate advantages of longevity, but little is known of their colon development and intestinal immunity. Herein we found that Ames dwarf mice have shorter colon and colonic crypts, but larger ratio of mesenteric lymph nodes (MLNs) over body weight than age-matched wild type (WT) mice. In the colonic lamina propria (cLP) of juvenile Ames mice, more inflammatory neutrophils (Ā: 0.15% vs. 0.03% in WT mice) and monocytes (Ā: 7.97% vs. 5.15%) infiltrated, and antigen presenting cells CD11c+ dendritic cells (Ā: 1.39% vs. 0.87%), CD11b+ macrophages (Ā: 3.22% vs. 0.81%) and gamma delta T (γδ T) cells (Ā: 5.56% vs. 1.35%) were increased. In adult Ames dwarf mice, adaptive immune cells, such as IL-17 producing CD4+ T helper (Th17) cells (Ā: 8.3% vs. 4.7%) were augmented. In the MLNs of Ames dwarf mice, the antigen presenting and adaptive immune cells also altered when compared to WT mice, such as a decrease of T-regulatory (Treg) cells in juvenile Ames mice (Ā: 7.7% vs.10.5%), but an increase of Th17 cells (Ā: 0.627% vs.0.093%). Taken together, these data suggest that somatotropic signaling deficiency influences colon development and intestinal immunity.
Aging | 2018
Justin Darcy; Samuel McFadden; Yimin Fang; Darlene E. Berryman; Edward O. List; Nicholas Milcik; A. Bartke
Ames dwarf (Prop1df) mice possess a loss-of-function mutation that results in deficiency of growth hormone, prolactin, and thyroid-stimulating hormone, as well as exceptional longevity. Work in other laboratories suggests that increased respiration and lipid utilization are important for maximizing mammalian longevity. Interestingly, these phenotypes are observed in Ames dwarf mice. We recently demonstrated that Ames dwarf mice have hyperactive brown adipose tissue (BAT), and hypothesized that this may in part be due to their increased surface to mass ratio leading to increased heat loss and an increased demand for thermogenesis. Here, we used increased environmental temperature (eT) to interrogate this hypothesis. We found that increased eT diminished BAT activity in Ames dwarf mice, and led to the normalization of both VO2 and respiratory quotient between dwarf and normal mice, as well as partial normalization (i.e. impairment) of glucose homeostasis in Ames dwarf mice housed at an increased eT. Together, these data suggest that an increased demand for thermogenesis is partially responsible for the improved energy metabolism and glucose homeostasis which are observed in Ames dwarf mice.
Adipocyte | 2017
Justin Darcy; Andrzej Bartke
Abstract Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1df/df) mice, which have a 40%–60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.