Justin H. Baumann
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin H. Baumann.
PLOS ONE | 2013
Verena Schoepf; Andréa G. Grottoli; Mark E. Warner; Wei-Jun Cai; Todd F. Melman; Kenneth D. Hoadley; D. Tye Pettay; Xinping Hu; Qian Li; Hui Xu; Yongchen Wang; Yohei Matsui; Justin H. Baumann
Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (−53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.
Nature Communications | 2016
Wei-Jun Cai; Yuening Ma; Brian M. Hopkinson; Andréa G. Grottoli; M. Warner; Qian Ding; Xinping Hu; Xiangchen Yuan; Verena Schoepf; Hui Xu; Chenhua Han; Todd F. Melman; Kenneth D. Hoadley; D. Tye Pettay; Yohei Matsui; Justin H. Baumann; Stephen Levas; Ye Ying; Yongchen Wang
Reliably predicting how coral calcification may respond to ocean acidification and warming depends on our understanding of coral calcification mechanisms. However, the concentration and speciation of dissolved inorganic carbon (DIC) inside corals remain unclear, as only pH has been measured while a necessary second parameter to constrain carbonate chemistry has been missing. Here we report the first carbonate ion concentration ([CO32−]) measurements together with pH inside corals during the light period. We observe sharp increases in [CO32−] and pH from the gastric cavity to the calcifying fluid, confirming the existence of a proton (H+) pumping mechanism. We also show that corals can achieve a high aragonite saturation state (Ωarag) in the calcifying fluid by elevating pH while at the same time keeping [DIC] low. Such a mechanism may require less H+-pumping and energy for upregulating pH compared with the high [DIC] scenario and thus may allow corals to be more resistant to climate change related stressors.
Proceedings of the Royal Society B: Biological Sciences | 2015
Verena Schoepf; Andréa G. Grottoli; Stephen Levas; Matthew D. Aschaffenburg; Justin H. Baumann; Yohei Matsui; Mark E. Warner
Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species.
Scientific Reports | 2016
Kenneth D. Hoadley; D. Tye Pettay; Andréa G. Grottoli; Wei-Jun Cai; Todd F. Melman; Verena Schoepf; Xinping Hu; Qian Li; Hui Xu; Yongchen Wang; Yohei Matsui; Justin H. Baumann; M. Warner
The physiological response to individual and combined stressors of elevated temperature and pCO2 were measured over a 24-day period in four Pacific corals and their respective symbionts (Acropora millepora/Symbiodinium C21a, Pocillopora damicornis/Symbiodinium C1c-d-t, Montipora monasteriata/Symbiodinium C15, and Turbinaria reniformis/Symbiodinium trenchii). Multivariate analyses indicated that elevated temperature played a greater role in altering physiological response, with the greatest degree of change occurring within M. monasteriata and T. reniformis. Algal cellular volume, protein, and lipid content all increased for M. monasteriata. Likewise, S. trenchii volume and protein content in T. reniformis also increased with temperature. Despite decreases in maximal photochemical efficiency, few changes in biochemical composition (i.e. lipids, proteins, and carbohydrates) or cellular volume occurred at high temperature in the two thermally sensitive symbionts C21a and C1c-d-t. Intracellular carbonic anhydrase transcript abundance increased with temperature in A. millepora but not in P. damicornis, possibly reflecting differences in host mitigated carbon supply during thermal stress. Importantly, our results show that the host and symbiont response to climate change differs considerably across species and that greater physiological plasticity in response to elevated temperature may be an important strategy distinguishing thermally tolerant vs. thermally sensitive species.
Coral Reefs | 2017
Verena Schoepf; Xinping Hu; Michael Holcomb; Wei-Jun Cai; Qian Li; Yongchen Wang; Hui Xu; Mark E. Warner; Todd F. Melman; Kenneth D. Hoadley; D. Tye Pettay; Yohei Matsui; Justin H. Baumann; Andréa G. Grottoli
Two primary methods—the buoyant weight (BW) and alkalinity anomaly (AA) techniques—are currently used to quantify net calcification rates (G) in scleractinian corals. However, it remains unclear whether they are directly comparable since the few method comparisons conducted to date have produced inconsistent results. Further, such a comparison has not been made for tropical corals. We directly compared GBW and GAA in four tropical and one temperate coral species cultured under various pCO2, temperature, and nutrient conditions. A range of protocols for conducting alkalinity depletion incubations was assessed. For the tropical corals, open-top incubations with manual stirring produced GAA that were highly correlated with and not significantly different from GBW. Similarly, GAA of the temperate coral was not significantly different from GBW when incubations provided water motion using a pump, but were significantly lower than GBW by 16% when water motion was primarily created by aeration. This shows that the two techniques can produce comparable calcification rates in corals but only when alkalinity depletion incubations are conducted under specific conditions. General recommendations for incubation protocols are made, especially regarding adequate water motion and incubation times. Further, the re-analysis of published data highlights the importance of using appropriate regression statistics when both variables are random and measured with error. Overall, we recommend the AA technique for investigations of community and short-term day versus night calcification, and the BW technique to measure organism calcification rates integrated over longer timescales due to practical limitations of both methods. Our findings will facilitate the direct comparison of studies measuring coral calcification using either method and thus have important implications for the fields of ocean acidification research and coral biology in general.
Global Change Biology | 2014
Andréa G. Grottoli; Mark E. Warner; Stephen Levas; Matthew D. Aschaffenburg; Verena Schoepf; Michael P. McGinley; Justin H. Baumann; Yohei Matsui
Marine Biology | 2016
Kenneth D. Hoadley; D. Tye Pettay; Andréa G. Grottoli; Wei-Jun Cai; Todd F. Melman; Stephen Levas; Verena Schoepf; Qian Ding; Xiangchen Yuan; Yongchen Wang; Yohei Matsui; Justin H. Baumann; Mark E. Warner
Coral Reefs | 2016
Stephen Levas; Andréa G. Grottoli; Verena Schoepf; Matthew D. Aschaffenburg; Justin H. Baumann; James E. Bauer; Mark E. Warner
Journal of Experimental Marine Biology and Ecology | 2014
Justin H. Baumann; Andréa G. Grottoli; Adam D. Hughes; Yohei Matsui
Marine Ecology Progress Series | 2015
Stephen Levas; Andréa G. Grottoli; Mark E. Warner; Wei-Jun Cai; James Bauer; Verena Schoepf; Justin H. Baumann; Yohei Matsui; Colin Gearing; Todd F. Melman; Kenneth D. Hoadley; Daniel T. Pettay; Xinping Hu; Qian Li; Hui Xu; Yongchen Wang