Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Ian Montgomery is active.

Publication


Featured researches published by Justin Ian Montgomery.


Journal of Medicinal Chemistry | 2014

Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors.

Mark Edward Flanagan; Joseph A. Abramite; Dennis P. Anderson; Ann Aulabaugh; Upendra P. Dahal; Adam M. Gilbert; Chao Li; Justin Ian Montgomery; Stacey R. Oppenheimer; Tim Ryder; Brandon P. Schuff; Daniel P. Uccello; Gregory S. Walker; Yan Wu; Matthew Frank Brown; Jinshan M. Chen; Matthew Merrill Hayward; Mark C. Noe; R. Scott Obach; Laurence Philippe; Veerabahu Shanmugasundaram; Michael J. Shapiro; Jeremy T. Starr; Justin G. Stroh; Ye Che

Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.


Mbio | 2012

Inhibition of LpxC Protects Mice from Resistant Acinetobacter baumannii by Modulating Inflammation and Enhancing Phagocytosis

Lin Lin; Brandon Tan; Paul Pantapalangkoor; Tiffany Ho; Beverlie Baquir; Andrew Tomaras; Justin Ian Montgomery; Usa Reilly; Elsa G. Barbacci; Kristine Hujer; Robert A. Bonomo; Lucia Fernandez; Robert E. W. Hancock; Mark D. Adams; Samuel W. French; Virgil S. Buslon; Brad Spellberg

ABSTRACT New treatments are needed for extensively drug-resistant (XDR) Gram-negative bacilli (GNB), such as Acinetobacter baumannii. Toll-like receptor 4 (TLR4) was previously reported to enhance bacterial clearance of GNB, including A. baumannii. However, here we have shown that 100% of wild-type mice versus 0% of TLR4-deficient mice died of septic shock due to A. baumannii infection, despite having similar tissue bacterial burdens. The strain lipopolysaccharide (LPS) content and TLR4 activation by extracted LPS did not correlate with in vivo virulence, nor did colistin resistance due to LPS phosphoethanolamine modification. However, more-virulent strains shed more LPS during growth than less-virulent strains, resulting in enhanced TLR4 activation. Due to the role of LPS in A. baumannii virulence, an LpxC inhibitor (which affects lipid A biosynthesis) antibiotic was tested. The LpxC inhibitor did not inhibit growth of the bacterium (MIC > 512 µg/ml) but suppressed A. baumannii LPS-mediated activation of TLR4. Treatment of infected mice with the LpxC inhibitor enhanced clearance of the bacteria by enhancing opsonophagocytic killing, reduced serum LPS concentrations and inflammation, and completely protected the mice from lethal infection. These results identify a previously unappreciated potential for the new class of LpxC inhibitor antibiotics to treat XDR A. baumannii infections. Furthermore, they have far-reaching implications for pathogenesis and treatment of infections caused by GNB and for the discovery of novel antibiotics not detected by standard in vitro screens. IMPORTANCE Novel treatments are needed for infections caused by Acinetobacter baumannii, a Gram-negative bacterium that is extremely antibiotic resistant. The current study was undertaken to understand the immunopathogenesis of these infections, as a basis for defining novel treatments. The primary strain characteristic that differentiated virulent from less-virulent strains was shedding of Gram-negative lipopolysaccharide (LPS) during growth. A novel class of antibiotics, called LpxC inhibitors, block LPS synthesis, but these drugs do not demonstrate the ability to kill A. baumannii in vitro. We found that an LpxC inhibitor blocked the ability of bacteria to activate the sepsis cascade, enhanced opsonophagocytic killing of the bacteria, and protected mice from lethal infection. Thus, an entire new class of antibiotics which is already in development has heretofore-unrecognized potential to treat A. baumannii infections. Furthermore, standard antibiotic screens based on in vitro killing failed to detect this treatment potential of LpxC inhibitors for A. baumannii infections. Novel treatments are needed for infections caused by Acinetobacter baumannii, a Gram-negative bacterium that is extremely antibiotic resistant. The current study was undertaken to understand the immunopathogenesis of these infections, as a basis for defining novel treatments. The primary strain characteristic that differentiated virulent from less-virulent strains was shedding of Gram-negative lipopolysaccharide (LPS) during growth. A novel class of antibiotics, called LpxC inhibitors, block LPS synthesis, but these drugs do not demonstrate the ability to kill A. baumannii in vitro. We found that an LpxC inhibitor blocked the ability of bacteria to activate the sepsis cascade, enhanced opsonophagocytic killing of the bacteria, and protected mice from lethal infection. Thus, an entire new class of antibiotics which is already in development has heretofore-unrecognized potential to treat A. baumannii infections. Furthermore, standard antibiotic screens based on in vitro killing failed to detect this treatment potential of LpxC inhibitors for A. baumannii infections.


Journal of Medicinal Chemistry | 2012

Potent Inhibitors of LpxC for the Treatment of Gram-Negative Infections

Matthew Frank Brown; Usa Reilly; Joseph A. Abramite; Robert M. Oliver; Rose Barham; Ye Che; Jinshan Michael Chen; Elizabeth M. Collantes; Seung Won Chung; Charlene R. Desbonnet; Jonathan L. Doty; Matthew Doroski; Juntyma J. Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Andrea Marra; Eric McElroy; Michael Melnick; Carol A. Menard; Justin Ian Montgomery; Lisa Mullins; Mark C. Noe; John P. O’Donnell; Joseph Penzien; Mark Stephen Plummer; Loren M. Price

In this paper, we present the synthesis and SAR as well as selectivity, pharmacokinetic, and infection model data for representative analogues of a novel series of potent antibacterial LpxC inhibitors represented by hydroxamic acid.


Journal of Medicinal Chemistry | 2017

Design of a Janus Kinase 3 (JAK3) Specific Inhibitor 1-((2S,5R)-5-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the Interrogation of JAK3 Signaling in Humans

Atli Thorarensen; Martin E. Dowty; Mary Ellen Banker; Brian Juba; Jason Jussif; Tsung Lin; Fabien Vincent; Robert M. Czerwinski; Agustin Casimiro-Garcia; Ray Unwalla; John I. Trujillo; Sidney Xi Liang; Paul Balbo; Ye Che; Adam M. Gilbert; Matthew Frank Brown; Matthew Merrill Hayward; Justin Ian Montgomery; Louis Leung; Xin Yang; Sarah Soucy; Martin Hegen; Jotham Wadsworth Coe; Jonathan Langille; Felix Vajdos; Jill Chrencik; Jean-Baptiste Telliez

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Journal of Medicinal Chemistry | 2016

Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family

Kim Huard; James R. Gosset; Justin Ian Montgomery; Adam M. Gilbert; Matthew Merrill Hayward; Thomas V. Magee; Shawn Cabral; Daniel P. Uccello; Kevin B. Bahnck; Janice A. Brown; Julie Purkal; Matthew Gorgoglione; Adhiraj Lanba; Kentaro Futatsugi; Michael Herr; Nathan E. Genung; Gary E. Aspnes; Jana Polivkova; Carmen N. Garcia-Irizarry; Qifang Li; Daniel Canterbury; Mark Niosi; Nicholas B. Vera; Zhenhong Li; Bhagyashree Khunte; Jaclyn Siderewicz; Timothy P. Rolph; Derek M. Erion

Inhibition of the sodium-coupled citrate transporter (NaCT or SLC13A5) has been proposed as a new therapeutic approach for prevention and treatment of metabolic diseases. In a previous report, we discovered dicarboxylate 1a (PF-06649298) which inhibits the transport of citrate in in vitro and in vivo settings via a specific interaction with NaCT. Herein, we report the optimization of this series leading to 4a (PF-06761281), a more potent inhibitor with suitable in vivo pharmacokinetic profile for assessment of in vivo pharmacodynamics. Compound 4a was used to demonstrate dose-dependent inhibition of radioactive [(14)C]citrate uptake in liver and kidney in vivo, resulting in modest reductions in plasma glucose concentrations.


The Journal of Antibiotics | 2015

Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors

Justin Ian Montgomery; James F. Smith; Andrew P. Tomaras; Richard P. Zaniewski; Craig J. McPherson; Laura A. McAllister; Sandra Hartman-Neumann; Marykay Lescoe; Jemy A. Gutierrez; Ying Yuan; Chris Limberakis; Alita A. Miller

A high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure–activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS). These targets of inhibition were confirmed in vitro, with PPD-1 showing IC50s of 21.7 and 35 μM in purified LysRS and ProRS enzyme assays, and PPD-2, 151 and 0.04 μM, respectively. The highly attractive chemical properties of these compounds combined with intriguing preliminary SAR suggest that further exploration of this compelling novel series is warranted.


ACS Chemical Biology | 2016

Discovery of a JAK3-Selective Inhibitor: Functional Differentiation of JAK3-Selective Inhibition over pan-JAK or JAK1-Selective Inhibition

Jean-Baptiste Telliez; Martin E. Dowty; Lu Wang; Jason Jussif; Tsung Lin; Li Li; Erick Moy; Paul Balbo; Wei Li; Yajuan Zhao; Kimberly Crouse; Caitlyn Dickinson; Peter Symanowicz; Martin Hegen; Mary Ellen Banker; Fabien Vincent; Ray Unwalla; Sidney Liang; Adam M. Gilbert; Matthew Frank Brown; Matthew Merrill Hayward; Justin Ian Montgomery; Xin Yang; Jonathan Bauman; John I. Trujillo; Agustin Casimiro-Garcia; Felix Vajdos; Louis Leung; Kieran F. Geoghegan; Amira Quazi


Archive | 2012

IMIDAZOLE, PYRAZOLE, AND TRIAZOLE DERIVATIVES USEFUL AS ANTIBACTERIAL AGENTS

Matthew Frank Brown; Jinshan Michael Chen; Michael Joseph Melnick; Justin Ian Montgomery; Usa Reilly


Archive | 2017

CCDC 1536276: Experimental Crystal Structure Determination

Atli Thorarensen; Martin E. Dowty; Mary Ellen Banker; Brian Juba; Jason Jussif; Tsung Lin; Fabien Vincent; Robert M. Czerwinski; Agustin Casimiro-Garcia; Ray Unwalla; John I. Trujillo; Sidney Xi Liang; Paul Balbo; Ye Che; Adam M. Gilbert; Matthew Frank Brown; Matthew Merrill Hayward; Justin Ian Montgomery; Louis Leung; Xin Yang; Sarah Soucy; Martin Hegen; Jotham Wadsworth Coe; Jonathan Langille; Felix Vajdos; Jill Chrencik; Jean-Baptiste Telliez


Archive | 2017

DERIVADOS DE 1,1,1-TRIFLUORO-3-HIDROXIPROPAN-2-IL CARBAMATO Y DERIVADOS DE 1,1,1-TRIFLUORO-4-HIDROXIBUTAN-2-IL CARBAMATO COMO INHIBIDORES DE MAGL

Damien Webb; Patrick Robert Verhoest; Bruce N. Rogers; Steven Victor O'neil; Christopher John Helal; Douglas S. Johnson; Justin Ian Montgomery; Laura Ann Mallister; Adam M. Gilbert; Christopher Ryan Butler; Michael Aaron Brodney; Elizabeth Mary Beck

Collaboration


Dive into the Justin Ian Montgomery's collaboration.

Researchain Logo
Decentralizing Knowledge