Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin L. Gardner is active.

Publication


Featured researches published by Justin L. Gardner.


The Journal of Neuroscience | 2008

Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic

Justin L. Gardner; Elisha P. Merriam; J. Anthony Movshon; David J. Heeger

We experience the visual world as phenomenally invariant to eye position, but almost all cortical maps of visual space in monkeys use a retinotopic reference frame, that is, the cortical representation of a point in the visual world is different across eye positions. It was recently reported that human cortical area MT (unlike monkey MT) represents stimuli in a reference frame linked to the position of stimuli in space, a “spatiotopic” reference frame. We used visuotopic mapping with blood oxygen level-dependent functional magnetic resonance imaging signals to define 12 human visual cortical areas, and then determined whether the reference frame in each area was spatiotopic or retinotopic. We found that all 12 areas, including MT, represented stimuli in a retinotopic reference frame. Although there were patches of cortex in and around these visual areas that were ostensibly spatiotopic, none of these patches exhibited reliable stimulus-evoked responses. We conclude that the early, visuotopically organized visual cortical areas in the human brain (like their counterparts in the monkey brain) represent stimuli in a retinotopic reference frame.


The Journal of Neuroscience | 2008

Executed and Observed Movements Have Different Distributed Representations in Human aIPS

Ilan Dinstein; Justin L. Gardner; Mehrdad Jazayeri; David J. Heeger

How similar are the representations of executed and observed hand movements in the human brain? We used functional magnetic resonance imaging (fMRI) and multivariate pattern classification analysis to compare spatial distributions of cortical activity in response to several observed and executed movements. Subjects played the rock–paper–scissors game against a videotaped opponent, freely choosing their movement on each trial and observing the opponents hand movement after a short delay. The identities of executed movements were correctly classified from fMRI responses in several areas of motor cortex, observed movements were classified from responses in visual cortex, and both observed and executed movements were classified from responses in either left or right anterior intraparietal sulcus (aIPS). We interpret above chance classification as evidence for reproducible, distributed patterns of cortical activity that were unique for execution and/or observation of each movement. Responses in aIPS enabled accurate classification of movement identity within each modality (visual or motor), but did not enable accurate classification across modalities (i.e., decoding observed movements from a classifier trained on executed movements and vice versa). These results support theories regarding the central role of aIPS in the perception and execution of movements. However, the spatial pattern of activity for a particular observed movement was distinctly different from that for the same movement when executed, suggesting that observed and executed movements are mostly represented by distinctly different subpopulations of neurons in aIPS.


Visual Neuroscience | 1999

Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex

Justin L. Gardner; Akiyuki Anzai; Izumi Ohzawa; Ralph D. Freeman

Orientation selectivity is one of the most conspicuous receptive-field (RF) properties that distinguishes neurons in the striate cortex from those in the lateral geniculate nucleus (LGN). It has been suggested that orientation selectivity arises from an elongated array of feedforward LGN inputs (Hubel & Wiesel, 1962). Others have argued that cortical mechanisms underlie orientation selectivity (e.g. Sillito, 1975; Somers et al., 1995). However, isolation of each mechanism is experimentally difficult and no single study has analyzed both processes simultaneously to address their relative roles. An alternative approach, which we have employed in this study, is to examine the relative contributions of linear and nonlinear mechanisms in sharpening orientation tuning. Since the input stage of simple cells is remarkably linear, the nonlinear contribution can be attributed solely to cortical factors. Therefore, if the nonlinear component is substantial compared to the linear contribution, it can be concluded that cortical factors play a prominent role in sharpening orientation tuning. To obtain the linear contribution, we first measure RF profiles of simple cells in the cats striate cortex using a binary m-sequence noise stimulus. Then, based on linear spatial summation of the RF profile, we obtain a predicted orientation-tuning curve, which represents the linear contribution. The nonlinear contribution is estimated as the difference between the predicted tuning curve and that measured with drifting sinusoidal gratings. We find that measured tuning curves are generally more sharply tuned for orientation than predicted curves, which indicates that the linear mechanism is not enough to account for the sharpness of orientation-tuning. Therefore, cortical factors must play an important role in sharpening orientation tuning of simple cells. We also examine the relationship of RF shape (subregion aspect ratio) and size (subregion length and width) to orientation-tuning halfwidth. As expected, predicted tuning halfwidths are found to depend strongly on both subregion length and subregion aspect ratio. However, we find that measured tuning halfwidths show only a weak correlation with subregion aspect ratio, and no significant correlation with RF length and width. These results suggest that cortical mechanisms not only serve to sharpen orientation tuning, but also serve to make orientation tuning less dependent on the size and shape of the RF. This ensures that orientation is represented equally well regardless of RF size and shape.


Neuron | 2011

Attentional enhancement via selection and pooling of early sensory responses in human visual cortex.

Franco Pestilli; Marisa Carrasco; David J. Heeger; Justin L. Gardner

The computational processes by which attention improves behavioral performance were characterized by measuring visual cortical activity with functional magnetic resonance imaging as humans performed a contrast-discrimination task with focal and distributed attention. Focal attention yielded robust improvements in behavioral performance accompanied by increases in cortical responses. Quantitative analysis revealed that if performance were limited only by the sensitivity of the measured sensory signals, the improvements in behavioral performance would have corresponded to an unrealistically large reduction in response variability. Instead, behavioral performance was well characterized by a pooling and selection process for which the largest sensory responses, those most strongly modulated by attention, dominated the perceptual decision. This characterization predicts that high-contrast distracters that evoke large responses should negatively impact behavioral performance. We tested and confirmed this prediction. We conclude that attention enhanced behavioral performance predominantly by enabling efficient selection of the behaviorally relevant sensory signals.


The Journal of Neuroscience | 2011

Feature-Specific Attentional Priority Signals in Human Cortex

Taosheng Liu; Luke Hospadaruk; David C. Zhu; Justin L. Gardner

Human can flexibly attend to a variety of stimulus dimensions, including spatial location and various features such as color and direction of motion. Although the locus of spatial attention has been hypothesized to be represented by priority maps encoded in several dorsal frontal and parietal areas, it is unknown how the brain represents attended features. Here we examined the distribution and organization of neural signals related to deployment of feature-based attention. Subjects viewed a compound stimulus containing two superimposed motion directions (or colors) and were instructed to perform an attention-demanding task on one of the directions (or colors). We found elevated and sustained functional magnetic resonance imaging response for the attention task compared with a neutral condition, without reliable differences in overall response amplitude between attending to different features. However, using multivoxel pattern analysis, we were able to decode the attended feature in both early visual areas (primary visual cortex to human motion complex hMT+) and frontal and parietal areas (e.g., intraparietal sulcus areas IPS1–IPS4 and frontal eye fields) that are commonly associated with spatial attention. Furthermore, analysis of the classifier weight maps showed that attending to motion and color evoked different patterns of activity, suggesting that different neuronal subpopulations in these regions are recruited for attending to different feature dimensions. Thus, our finding suggests that, rather than a purely spatial representation of priority, frontal and parietal cortical areas also contain multiplexed signals related to the priority of different nonspatial features.


NeuroImage | 2010

Is cortical vasculature functionally organized

Justin L. Gardner

The cortical vasculature is a well-structured and organized system, but the extent to which it is organized with respect to the neuronal functional architecture is unknown. In particular, does vasculature follow the same functional organization as cortical columns? In principle, cortical columns that share tuning for stimulus features like orientation may often be active together and thus require oxygen and metabolic nutrients together. If the cortical vasculature is built to serve these needs, it may also tend to aggregate and amplify orientation specific signals and explain why they are available in fMRI data at very low resolution.


Nature Neuroscience | 2002

Serial linkage of target selection for orienting and tracking eye movements.

Justin L. Gardner; Stephen G. Lisberger

Many natural actions require the coordination of two different kinds of movements. How are targets chosen under these circumstances: do central commands instruct different movement systems in parallel, or does the execution of one movement activate a serial chain that automatically chooses targets for the other movement? We examined a natural eye tracking action that consists of orienting saccades and tracking smooth pursuit eye movements, and found strong physiological evidence for a serial strategy. Monkeys chose freely between two identical spots that appeared at different sites in the visual field and moved in orthogonal directions. If a saccade was evoked to one of the moving targets by microstimulation in either the frontal eye field (FEF) or the superior colliculus (SC), then the same target was automatically chosen for pursuit. Our results imply that the neural signals responsible for saccade execution can also act as an internal command of target choice for other movement systems.


Nature Neuroscience | 2007

A temporal frequency–dependent functional architecture in human V1 revealed by high-resolution fMRI

Pei Sun; Kenichi Ueno; R. Allen Waggoner; Justin L. Gardner; Keiji Tanaka; Kang Cheng

Although cortical neurons with similar functional properties often cluster together in a columnar organization, only ocular dominance columns, the columnar structure representing segregated anatomical input (from one of the two eyes), have been found in human primary visual cortex (V1). It has yet to be shown whether other columnar organizations that arise only from differential responses to stimulus properties also exist in human V1. Using high-resolution functional magnetic resonance imaging, we have found such a functional architecture containing domains that respond preferentially to either low or high temporal frequency.


Neuron | 2003

Directional Anisotropies Reveal a Functional Segregation of Visual Motion Processing for Perception and Action

Anne K. Churchland; Justin L. Gardner; I-han Chou; Nicholas J. Priebe; Stephen G. Lisberger

Human exhibits an anisotropy in direction perception: discrimination is superior when motion is around horizontal or vertical rather than diagonal axes. In contrast to the consistent directional anisotropy in perception, we found only small idiosyncratic anisotropies in smooth pursuit eye movements, a motor action requiring accurate discrimination of visual motion direction. Both pursuit and perceptual direction discrimination rely on signals from the middle temporal visual area (MT), yet analysis of multiple measures of MT neuronal responses in the macaque failed to provide evidence of a directional anisotropy. We conclude that MT represents different motion directions uniformly, and subsequent processing creates a directional anisotropy in pathways unique to perception. Our data support the hypothesis that, at least for visual motion, perception and action are guided by inputs from separate sensory streams. The directional anisotropy of perception appears to originate after the two streams have segregated and downstream from area MT.


The Journal of Neuroscience | 2013

Modulation of Visual Responses by Gaze Direction in Human Visual Cortex

Elisha P. Merriam; Justin L. Gardner; J. Anthony Movshon; David J. Heeger

To locate visual objects, the brain combines information about retinal location and direction of gaze. Studies in monkeys have demonstrated that eye position modulates the gain of visual signals with “gain fields,” so that single neurons represent both retinotopic location and eye position. We wished to know whether eye position and retinotopic stimulus location are both represented in human visual cortex. Using functional magnetic resonance imaging, we measured separately for each of several different gaze positions cortical responses to stimuli that varied periodically in retinal locus. Visually evoked responses were periodic following the periodic retinotopic stimulation. Only the response amplitudes depended on eye position; response phases were indistinguishable across eye positions. We used multivoxel pattern analysis to decode eye position from the spatial pattern of response amplitudes. The decoder reliably discriminated eye position in five of the early visual cortical areas by taking advantage of a spatially heterogeneous eye position-dependent modulation of cortical activity. We conclude that responses in retinotopically organized visual cortical areas are modulated by gain fields qualitatively similar to those previously observed neurophysiologically.

Collaboration


Dive into the Justin L. Gardner's collaboration.

Top Co-Authors

Avatar

David J. Heeger

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar

Kang Cheng

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Kenichi Ueno

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Franco Pestilli

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiji Tanaka

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Yuko Hara

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge