Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin L. Huntington is active.

Publication


Featured researches published by Justin L. Huntington.


Journal of Hydrometeorology | 2016

The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand

Michael T. Hobbins; Andrew W. Wood; Daniel J. McEvoy; Justin L. Huntington; Charles Morton; Martha C. Anderson; Christopher R. Hain

AbstractMany operational drought indices focus primarily on precipitation and temperature when depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and products that reflect the evaporative dynamics of drought. The linkage between atmospheric evaporative demand E0 and actual evapotranspiration (ET) is leveraged in a new drought index based solely on E0—the Evaporative Demand Drought Index (EDDI). EDDI measures the signal of drought through the response of E0 to surface drying anomalies that result from two distinct land surface–atmosphere interactions: 1) a complementary relationship between E0 and ET that develops under moisture limitations at the land surface, leading to ET declining and increasing E0, as in sustained droughts, and 2) parallel ET and E0 increases arising from increased energy availability that lead to surface moisture limitations, as in flash droughts. To calculate EDDI from E0, a long-term, daily reanalysis of reference ET estimated from the American Soc...


Water Resources Research | 2003

Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology

Brad S. Morse; Greg Pohll; Justin L. Huntington; Ramiro Rodríguez Castillo

[1] In 1992, Mexican researchers discovered concentrations of arsenic in excess of World Heath Organization (WHO) standards in several municipal wells in the Zimapan Valley of Mexico. This study describes a method to delineate a capture zone for one of the most highly contaminated wells to aid in future well siting. A stochastic approach was used to model the capture zone because of the high level of uncertainty in several input parameters. Two stochastic techniques were performed and compared: ‘‘standard’’ Monte Carlo analysis and the generalized likelihood uncertainty estimator (GLUE) methodology. The GLUE procedure differs from standard Monte Carlo analysis in that it incorporates a goodness of fit (termed a likelihood measure) in evaluating the model. This allows for more information (in this case, head data) to be used in the uncertainty analysis, resulting in smaller prediction uncertainty. Two likelihood measures are tested in this study to determine which are in better agreement with the observed heads. While the standard Monte Carlo approach does not aid in parameter estimation, the GLUE methodology indicates best fit models when hydraulic conductivity is approximately 10 � 6.5 m/s, with vertically isotropic conditions and large quantities of interbasin flow entering the basin. Probabilistic isochrones (capture zone boundaries) are then presented, and as predicted, the GLUE-derived capture zones are significantly smaller in area than those from the standard Monte Carlo approach. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1832 Hydrology: Groundwater transport; 1869 Hydrology: Stochastic processes; KEYWORDS: Bayesian, capture zone, GLUE, Zimapan


Journal of Hydrometeorology | 2013

Evaluation of the Complementary Relationship Using Noah Land Surface Model and North American Regional Reanalysis (NARR) Data to Estimate Evapotranspiration in Semiarid Ecosystems

W. Thilini Jaksa; Venkataramana Sridhar; Justin L. Huntington; Mandar Khanal

Estimating evapotranspiration using the complementary relationship can serve as a proxy to more sophisticated physically based approaches and can be used to better understand water and energy budget feedbacks. The authors investigated the existence of complementarity between actual evapotranspiration (ET) and potential ET (ETp) over natural vegetation in semiarid desert ecosystems of southern Idaho using only the forcing data and simulated fluxes obtained from Noah land surface model (LSM) and North American Regional Reanalysis (NARR) data. To mitigate the paucity of long-term meteorological data, the Noah LSM-simulated fluxes and the NARR forcing data were used in the advection‐aridity (AA) model to derive the complementary relationship (CR) for the sagebrush and cheatgrass ecosystems. When soil moisture was a limiting factor for ET, the CR was stable and asymmetric, with b values of 2.43 and 1.43 for sagebrush and cheatgrass, respectively. Higher b values contributed to decreased ET and increased ETp, and as a result ET from the sagebrush community was less compared to that of cheatgrass. Validation of the derived CR showed that correlations between daily ET from the Noah LSM and CR-based ET were 0.76 and 0.80 for sagebrush and cheatgrass, respectively, while the root-mean-square errors were 0.53 and 0.61 mm day 21 .


Journal of Hydrometeorology | 2016

The Evaporative Demand Drought Index. Part II: CONUS-Wide Assessment against Common Drought Indicators

Daniel J. McEvoy; Justin L. Huntington; Michael T. Hobbins; Andrew W. Wood; Charles Morton; Martha C. Anderson; Christopher R. Hain

AbstractPrecipitation, soil moisture, and air temperature are the most commonly used climate variables to monitor drought; however, other climatic factors such as solar radiation, wind speed, and humidity can be important drivers in the depletion of soil moisture and evolution and persistence of drought. This work assesses the Evaporative Demand Drought Index (EDDI) at multiple time scales for several hydroclimates as the second part of a two-part study. EDDI and individual evaporative demand components were examined as they relate to the dynamic evolution of flash drought over the central United States, characterization of hydrologic drought over the western United States, and comparison to commonly used drought metrics of the U.S. Drought Monitor (USDM), Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and the evaporative stress index (ESI). Two main advantages of EDDI over other drought indices are that it is independent of precipitation (similar to ESI) and it can be dec...


Geophysical Research Letters | 2016

Improved seasonal drought forecasts using reference evapotranspiration anomalies

Daniel J. McEvoy; Justin L. Huntington; John F. Mejia; Michael T. Hobbins

A novel contiguous United States (CONUS) wide evaluation of reference evapotranspiration (ET0; a formulation of evaporative demand) anomalies is performed using the Climate Forecast System version 2 (CFSv2) reforecast data for 1982–2009. This evaluation was motivated by recent research showing ET0 anomalies can accurately represent drought through exploitation of the complementary relationship between actual evapotranspiration and ET0. Moderate forecast skill of ET0 was found up to leads of 5 months and was consistently better than precipitation skill over most of CONUS. Forecasts of ET0 during drought events revealed high categorical skill for notable warm-season droughts of 1988 and 1999 in the central and northeast CONUS, with precipitation skill being much lower or absent. Increased ET0 skill was found in several climate regions when CFSv2 forecasts were initialized during moderate-to-strong El Nino–Southern Oscillation events. Our findings suggest that ET0 anomaly forecasts can improve and complement existing seasonal drought forecasts.


Water Resources Research | 2016

Rescaling the complementary relationship for land surface evaporation

Richard Crago; Jozsef Szilagyi; Russell J. Qualls; Justin L. Huntington

Recent research into the complementary relationship (CR) between actual and apparent potential evaporation has resulted in numerous alternative forms for the CR. Inspired by Brutsaert [2015], who derived a general CR in the form y=function(x), where x is the ratio of potential evaporation to apparent potential evaporation and y is the ratio of actual to apparent potential evaporation, an equation is proposed to calculate the value of x at which y goes to zero, denoted xmin. The value of xmin varies even at an individual observation site, but can be calculated using only the data required for the Penman (1948) equation as expressed here, so no calibration of xmin is required. It is shown that the scatter in x-y plots using experimental data is reduced when x is replaced by X=(x-xmin)/(1-xmin). This rescaling results in data falling along the line y=X, which is proposed as a new version of the CR. While a reinterpretation of the fundamental boundary conditions proposed by Brutsaert [2015] is required, the physical constraints behind them are still met. An alternative formulation relating y to X is also discussed. This article is protected by copyright. All rights reserved.


Journal of Hydrometeorology | 2014

Use of an Observation Network in the Great Basin to Evaluate Gridded Climate Data

Daniel J. McEvoy; John F. Mejia; Justin L. Huntington

AbstractPredicting sharp hydroclimatic gradients in the complex terrain of the Great Basin can prove to be challenging because of the lack of climate observations that are gradient focused. Furthermore, evaluating gridded data products (GDPs) of climate in such environments for use in local hydroclimatic assessments is also challenging and typically ignored because of the lack of observations. In this study, independent Nevada Climate-Ecohydrological Assessment Network (NevCAN) observations of temperature, relative humidity, and precipitation collected along large altitudinal gradients of the Snake and Sheep mountain ranges from water-year 2012 (October–September) are utilized to evaluate four GDPs of different spatial resolutions: Parameter–Elevation Regressions on Independent Slopes Model (PRISM) 4 km, PRISM 800 m, Daymet 1 km, and a North American Land Data Assimilation System (NLDAS)–PRISM hybrid 4-km product. Inconsistencies and biases in precipitation measurements due to station siting and gauge typ...


Ecohydrology | 2017

Evaluating mountain meadow groundwater response to Pinyon-Juniper and temperature in a Great Basin watershed†

Rosemary W.H. Carroll; Justin L. Huntington; Keirith A. Snyder; Richard G. Niswonger; Charles Morton; Tamzen K. Stringham

This research highlights development and application of an integrated hydrologic model (GSFLOW) to a semiarid, snow-dominated watershed in the Great Basin to evaluate Pinyon-Juniper (PJ) and temperature controls on mountain meadow shallow groundwater. The work used Google Earth Engine Landsat satellite and gridded climate archives for model evaluation. Model simulations across three decades indicated that the watershed operates on a threshold response to precipitation (P) > 400 mm y-1 to produce a positive yield (P-ET; 9%) resulting in stream discharge and a rebound in meadow groundwater levels during these wetter years. Observed and simulated meadow groundwater response to large P correlates with above average predicted soil moisture and with a normalized difference vegetation index (NDVI) threshold value > 0.3. A return to assumed pre-expansion PJ conditions or an increase in temperature to mid-21st century shifts yielded by only ±1% during the multi-decade simulation period; but changes of approximately ±4% occurred during wet years. Changes in annual yield were largely dampened by the spatial and temporal redistribution of evapotranspiration (ET) across the watershed. Yet, the influence of this redistribution and vegetation structural controls on snowmelt altered recharge to control water table depth in the meadow. Even a small-scale removal of PJ (0.5 km2) proximal to the meadow will promote a stable, shallow groundwater system resilient to droughts, while modest increases in temperature will produce a meadow susceptible to declining water levels and a community structure likely to move toward dry and degraded conditions. This article is protected by copyright. All rights reserved.


Bulletin of the American Meteorological Society | 2017

Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding

Justin L. Huntington; Katherine C. Hegewisch; Britta Daudert; Charles Morton; John T. Abatzoglou; Daniel J. McEvoy; Tyler A. Erickson

AbstractThe paucity of long-term observations, particularly in regions with heterogeneous climate and land cover, can hinder incorporating climate data at appropriate spatial scales for decision-making and scientific research. Numerous gridded climate, weather, and remote sensing products have been developed to address the needs of both land managers and scientists, in turn enhancing scientific knowledge and strengthening early-warning systems. However, these data remain largely inaccessible for a broader segment of users given the computational demands of big data. Climate Engine (http://ClimateEngine.org) is a web-based application that overcomes many computational barriers that users face by employing Google’s parallel cloud-computing platform, Google Earth Engine, to process, visualize, download, and share climate and remote sensing datasets in real time. The software application development and design of Climate Engine is briefly outlined to illustrate the potential for high-performance processing of...


Intech | 2012

Operational Remote Sensing of ET and Challenges

Ayse Irmak; Richard G. Allen; Jeppe Kjaersgaard; Justin L. Huntington; Baburao Kamble; Ricardo Trezza; Ian Ratcliffe

Satellite imagery now provides a dependable basis for computational models that determine evapotranspiration (ET) by surface energy balance (EB). These models are now routinely applied as part of water and water resources management operations of state and federal agencies. They are also an integral component of research programs in land and climate processes. The very strong benefit of satellite-based models is the quantification of ET over large areas. This has enabled the estimation of ET from individual fields among populations of fields (Tasumi et al. 2005) and has greatly propelled field specific management of water systems and water rights as well as mitigation efforts under water scarcity. The more dependable and universal satellite-based models employ a surface energy balance (EB) where ET is computed as a residual of surface energy. This determination requires a thermal imager onboard the satellite. Thermal imagers are expensive to construct and more a required for future water resources work. Future moderate resolution satellites similar to Landsat need to be equipped with moderately high resolution thermal imagers to provide greater opportunity to estimate spatial distribution of actual ET in time. Integrated ET is enormously valuable for monitoring effects of water shortage, water transfer, irrigation performance, and even impacts of crop type and variety and irrigation type on ET. Allen (2010b) showed that the current 16-day overpass return time of a single Landsat satellite is often insufficient to produce annual ET products due to impacts of clouds. An analysis of a 25 year record of Landsat imagery in southern Idaho showed the likelihood of producing annual ET products for any given year to increase by a factor of NINE times (from 5% probability to 45% probability) when two Landsat systems were in operation rather than one (Allen 2010b). Satellite-based ET products are now being used in water transfers, to enforce water regulations, to improve development and calibration of ground-water models, where ET is a needed input for estimating recharge, to manage streamflow for endangered species management, to estimate water consumption by invasive riparian and desert species, to estimate ground-water consumption from at-risk aquifers, for quantification of native

Collaboration


Dive into the Justin L. Huntington's collaboration.

Top Co-Authors

Avatar

Charles Morton

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar

Richard G. Niswonger

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Pohll

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jozsef Szilagyi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Michael T. Hobbins

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Ayse Kilic

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Keirith A. Snyder

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge