Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin L. MacCallum is active.

Publication


Featured researches published by Justin L. MacCallum.


Science | 2012

The Protein-Folding Problem, 50 Years On

Ken A. Dill; Justin L. MacCallum

Protein Folding: Past and Future Fifty years ago the Nobel Prize in chemistry was awarded to Max Perutz and John Kendrew for determining the structure of globular proteins. Since first viewing their structure of myoglobin, scientists have sought to understand protein folding. Dill and MacCallum (p. 1042) review the progress that has been made on three central questions: What is the code that relates sequence to structure? How do proteins fold so fast? Can protein structure be computationally predicted? While we have come some way toward answering these questions, new questions have been gene rated. It is no longer useful to talk about “solving the protein-folding problem”—protein folding has grown into a field of research where the next 50 years promise to be as exciting as the last. The protein-folding problem was first posed about one half-century ago. The term refers to three broad questions: (i) What is the physical code by which an amino acid sequence dictates a protein’s native structure? (ii) How can proteins fold so fast? (iii) Can we devise a computer algorithm to predict protein structures from their sequences? We review progress on these problems. In a few cases, computer simulations of the physical forces in chemically detailed models have now achieved the accurate folding of small proteins. We have learned that proteins fold rapidly because random thermal motions cause conformational changes leading energetically downhill toward the native structure, a principle that is captured in funnel-shaped energy landscapes. And thanks in part to the large Protein Data Bank of known structures, predicting protein structures is now far more successful than was thought possible in the early days. What began as three questions of basic science one half-century ago has now grown into the full-fledged research field of protein physical science.


Biophysical Journal | 2008

Distribution of Amino Acids in a Lipid Bilayer from Computer Simulations

Justin L. MacCallum; W. F. Drew Bennett; D. Peter Tieleman

We have calculated the distribution in a lipid bilayer of small molecules mimicking 17 natural amino acids in atomistic detail by molecular dynamics simulation. We considered both charged and uncharged forms for Lys, Arg, Glu, and Asp. The results give detailed insight in the molecular basis of the preferred location and orientation of each side chain as well the preferred charge state for ionizable residues. Partitioning of charged and polar side chains is accompanied by water defects connecting the side chains to bulk water. These water defects dominate the energetic of partitioning, rather than simple partitioning between water and a hydrophobic phase. Lys, Glu, and Asp become uncharged well before reaching the center of the membrane, but Arg may be either charged or uncharged at the center of the membrane. Phe has a broad distribution in the membrane but Trp and Tyr localize strongly to the interfacial region. The distributions are useful for the development of coarse-grained and implicit membrane potentials for simulation and structure prediction. We discuss the relationship between the distribution in membranes, bulk partitioning to cyclohexane, and several amino acid hydrophobicity scales.


Journal of the American Chemical Society | 2009

Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

W. F. Drew Bennett; Justin L. MacCallum; Marlon J. Hinner; Siewert J. Marrink; D. Peter Tieleman

The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a systematic set of lipid bilayers. In addition to atomistic simulations, we undertook a large set of coarse grained simulations, which allowed longer time and length scales to be sampled. Our results agree with recent experiments (Steck, T. L.; et al. Biophys. J. 2002, 83, 2118-2125) that the rate of cholesterol flip-flop can be fast on physiological time scales, while extending our understanding of this process to a range of lipids. We predicted that the rate of flip-flop is strongly dependent on the composition of the bilayer. In polyunsaturated bilayers, cholesterol undergoes flip-flop on a submicrosecond time scale, while flip-flop occurs in the second range in saturated bilayers with high cholesterol content. We also calculated the free energy of cholesterol desorption, which can be equated to the excess chemical potential of cholesterol in the bilayer compared to water. The free energy of cholesterol desorption from a DPPC bilayer is 80 kJ/mol, compared to 67 kJ/mol for a DAPC bilayer. In general, cholesterol prefers more ordered and rigid bilayers and has the lowest affinity for bilayers with two polyunsaturated chains. Overall, the simulations provide a detailed molecular level thermodynamic description of cholesterol interactions with lipid bilayers, of fundamental importance to eukaryotic life.


Journal of the American Chemical Society | 2009

Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes.

W. F. Drew Bennett; Justin L. MacCallum; D. Peter Tieleman

Cholesterol is an important component of eukaryotic cellular membranes. Despite extensive literature on the physiochemical effects of cholesterol on membranes, much remains unknown about the precise role of cholesterol and its molecular interactions in membranes. Regular thermal fluctuations of lipids normal to the plane of the membrane are biologically relevant for many processes, such as interactions with enzymes, elastic properties, and hydrophobic matching, while larger fluctuations are involved in vesicle budding and fusion, passive lipid flip-flop, and pore formation. Here we used molecular dynamics simulations to investigate the thermodynamic effect of the cholesterol concentration on dipalmitoylphosphatidylcholine (DPPC) bilayers. We calculated the potentials of mean force for DPPC partitioning in DPPC bilayers containing 20 and 40 mol % cholesterol. Increasing the cholesterol content increases the free energy barrier for transferring the headgroup of DPPC to the center of the bilayer and slows the rate of DPPC flip-flop by orders of magnitude. Cholesterol increases the order, thickness, and rigidity of the bilayers, which restricts bilayer deformations and prevents pore formation. While DPPC flip-flop is pore-mediated in a pure bilayer, we do not observe pores in the 20 and 40 mol % bilayers. Increasing the cholesterol concentration causes a decrease in the free energy to transfer DPPC from its equilibrium position into bulk waterindicating that DPPC prefers to be in cholesterol-free bilayers. We also observe a reduction in small fluctuations of DPPC normal to the bilayer as the cholesterol concentration is increased.


Journal of Computational Chemistry | 2003

Calculation of the water-cyclohexane transfer free energies of neutral amino acid side-chain analogs using the OPLS all-atom force field.

Justin L. MacCallum; D. Peter Tieleman

We calculated the free energy of solvation of the neutral analogs of 18 amino acid side‐chains (not including glycine and proline) using the OPLS all‐atom force field in TIP4P water, SPC water, and cyclohexane by molecular dynamics simulation and thermodynamic integration. The average unsigned errors in the free energies of solvation in TIP4P, SPC, and cyclohexane are 4.4, 4.9, and 2.1 kJ/mol respectively. Most of the calculated hydration free energies are not favorable enough compared to experiment. The largest errors are found for tryptophan, histidine, glutamic acid, and glutamine. The average unsigned errors in the free energy of transfer from TIP4P to cyclohexane and from SPC to cyclohexane are 4.0 and 4.1 kJ/mol, respectively. The largest errors, of more than 7.5 kJ/mol, are found for histidine, glutamine, and glutamatic acid.


Proteins | 2011

Assessment of protein structure refinement in CASP9.

Justin L. MacCallum; Alberto Perez; Michael J. Schnieders; Lan Hua; Matthew P. Jacobson; Ken A. Dill

We assess performance in the structure refinement category in CASP9. Two years after CASP8, the performance of the best groups has not improved. There are few groups that improve any of our assessment scores with statistical significance. Some predictors, however, are able to consistently improve the physicality of the models. Although we cannot identify any clear bottleneck in improving refinement, several points arise: (1) The refinement portion of CASP has too few targets to make many statistically meaningful conclusions. (2) Predictors are usually very conservative, limiting the possibility of large improvements in models. (3) No group is actually able to correctly rank their five submissions—indicating that potentially better models may be discarded. (4) Different sampling strategies work better for different refinement problems; there is no single strategy that works on all targets. In general, conservative strategies do better, while the greatest improvements come from more adventurous sampling—at the cost of consistency. Comparison with experimental data reveals aspects not captured by comparison to a single structure. In particular, we show that improvement in backbone geometry does not always mean better agreement with experimental data. Finally, we demonstrate that even given the current challenges facing refinement, the refined models are useful for solving the crystallographic phase problem through molecular replacement. Proteins 2011;.


Biophysical Journal | 2011

Transfer of Arginine into Lipid Bilayers Is Nonadditive

Justin L. MacCallum; W. F. Drew Bennett; D. Peter Tieleman

Computer simulations suggest that the translocation of arginine through the hydrocarbon core of a lipid membrane proceeds by the formation of a water-filled defect that keeps the arginine molecule hydrated even at the center of the bilayer. We show here that adding additional arginine molecules into one of these water defects causes only a small change in free energy. The barrier for transferring multiple arginines through the membrane is approximately the same as for a single arginine and may even be lower depending on the exact geometry of the system. We discuss these results in the context of arginine-rich peptides such as antimicrobial and cell-penetrating peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Hydrophobic association of α-helices, steric dewetting, and enthalpic barriers to protein folding

Justin L. MacCallum; Maria Sabaye Moghaddam; Hue Sun Chan; D. Peter Tieleman

Efficient protein folding implies a microscopic funnel-like multidimensional free-energy landscape. Macroscopically, conformational entropy reduction can manifest itself as part of an empirical barrier in the traditional view of folding, but experiments show that such barriers can also entail significant unfavorable enthalpy changes. This observation raises the puzzling possibility, irrespective of conformational entropy, that individual microscopic folding trajectories may encounter large uphill moves and thus the multidimensional free-energy landscape may not be funnel-like. Here, we investigate how nanoscale hydrophobic interactions might underpin this salient enthalpic effect in biomolecular assembly by computer simulations of the association of two preformed polyalanine or polyleucine helices in water. We observe a high, positive enthalpic signature at room temperature when the helix separation is less than a single layer of water molecules. Remarkably, this unfavorable enthalpy change, with a parallel increase in void volume, is largely compensated for by a concomitant increase in solvent entropy, netting only a small or nonexistent microscopic free-energy barrier. Thus, our findings suggest that high enthalpic folding barriers can be consistent with a funnel picture of folding and are mainly a desolvation phenomenon indicative of a cooperative mechanism of simultaneous formation of multiple side-chain contacts at the rate-limiting step.


Trends in Biochemical Sciences | 2011

Hydrophobicity scales: a thermodynamic looking glass into lipid–protein interactions

Justin L. MacCallum; D. Peter Tieleman

The partitioning of amino acid sidechains into the membrane is a key aspect of membrane protein folding. However, lipid bilayers exhibit rapidly changing physicochemical properties over their nanometer-scale thickness, which complicates understanding the thermodynamics and microscopic details of membrane partitioning. Recent data from diverse approaches, including protein insertion by the Sec translocon, folding of a small beta-barrel membrane protein and computer simulations of the exact distribution of a variety of small molecules and peptides, have joined older hydrophobicity scales for membrane protein prediction. We examine the correlations among the scales and find that they are remarkably correlated even though there are large differences in magnitude. We discuss the implications of these scales for understanding membrane protein structure and function.


Proteins | 2009

Assessment of the protein-structure refinement category in CASP8

Justin L. MacCallum; Lan Hua; Michael J. Schnieders; Vijay S. Pande; Matthew P. Jacobson; Ken A. Dill

Here, we summarize the assessment of protein structure refinement in CASP8. Twenty‐four groups refined a total of 12 target proteins. Averaging over all groups and all proteins, there was no net improvement over the original starting models. However, there are now some individual research groups who consistently do improve protein structures relative to a starting starting model. We compare various measures of quality assessment, including (i) standard backbone‐based methods, (ii) new methods from the Richardson group, and (iii) ensemble‐based methods for comparing experimental structures, such as NMR NOE violations and the suitability of the predicted models to serve as templates for molecular replacement. On the whole, there is a general correlation among various measures. However, there are interesting differences. Sometimes a structure that is in better agreement with the experimental data is judged to be slightly worse by GDT‐TS. This suggests that for comparing protein structures that are already quite close to the native, it may be preferable to use ensemble‐based experimentally derived measures of quality, in addition to single‐structure‐based methods such as GDT‐TS. Proteins 2009.

Collaboration


Dive into the Justin L. MacCallum's collaboration.

Top Co-Authors

Avatar

Ken A. Dill

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arijit Roy

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge