Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin M. Summy is active.

Publication


Featured researches published by Justin M. Summy.


Cancer and Metastasis Reviews | 2003

Src family kinases in tumor progression and metastasis

Justin M. Summy; Gary E. Gallick

The Src family of non-receptor protein tyrosine kinases plays critical roles in a variety of cellular signal transduction pathways, regulating such diverse processes as cell division, motility, adhesion, angiogenesis, and survival. Constitutively activated variants of Src family kinases, including the viral oncoproteins v-Src and v-Yes, are capable of inducing malignant transformation of a variety of cell types. Src family kinases, most notably although not exclusively c-Src, are frequently overexpressed and/or aberrantly activated in a variety of epithelial and non-epithelial cancers. Activation is very common in colorectal and breast cancers, and somewhat less frequent in melanomas, ovarian cancer, gastric cancer, head and neck cancers, pancreatic cancer, lung cancer, brain cancers, and blood cancers. Further, the extent of increased Src family activity often correlates with malignant potential and patient survival. Activation of Src family kinases in human cancers may occur through a variety of mechanisms and is frequently a critical event in tumor progression. Exactly how Src family kinases contribute to individual tumors remains to be defined completely, however they appear to be important for multiple aspects of tumor progression, including proliferation, disruption of cell/cell contacts, migration, invasiveness, resistance to apoptosis, and angiogenesis. This review details the evidence for Src family activation in human tumors, and emphasizes possible consequences to tumor progression. Given the ability of Src and its family members to participate in so many aspects of tumor progression and metastasis, Src family kinases are attractive targets for future anti-cancer therapeutics.


Annals of Surgical Oncology | 2007

Development and Characterization of Gemcitabine-Resistant Pancreatic Tumor Cells

Ami Shah; Justin M. Summy; Jing Zhang; Serk In Park; Nila U. Parikh; Gary E. Gallick

BackgroundPancreatic cancer is an exceptionally lethal disease with an annual mortality nearly equivalent to its annual incidence. This dismal rate of survival is due to several factors including late presentation with locally advanced, unresectable tumors, early metastatic disease, and rapidly arising chemoresistance. To study the mechanisms of chemoresistance in pancreatic cancer we developed two gemcitabine-resistant pancreatic cancer cell lines.MethodsResistant cells were obtained by culturing L3.6pl and AsPC-1 cells in serially increasing concentrations of gemcitabine. Stable cultures were obtained that were 40- to 50-fold increased in resistance relative to parental cells. Immunofluorescent staining was performed to examine changes in β-catenin and E-cadherin localization. Protein expression was determined by immunoblotting. Migration and invasion were determined by modified Boyden chamber assays. Fluorescence-activated cell sorting (FACS) analyses were performed to examine stem cell markers.ResultsGemcitabine-resistant cells underwent distinct morphological changes, including spindle-shaped morphology, appearance of pseudopodia, and reduced adhesion characteristic of transformed fibroblasts. Gemcitabine-resistant cells were more invasive and migratory. Gemcitabine-resistant cells were increased in vimentin and decreased in E-cadherin expression. Immunofluorescence and immunoblotting revealed increased nuclear localization of total β-catenin. These alterations are hallmarks of epithelial-to-mesenchymal transition (EMT). Resistant cells were activated in the receptor protein tyrosine kinase, c-Met and increased in expression of the stem cell markers CD (cluster of differentiation)24, CD44, and epithelial-specific antigen (ESA).ConclusionsGemcitabine-resistant pancreatic tumor cells are associated with EMT, a more-aggressive and invasive phenotype in numerous solid tumors. The increased phosphorylation of c-Met may also be related to chemoresistance and EMT and presents as an attractive adjunctive chemotherapeutic target in pancreatic cancer.


Oncogene | 2002

Src activation regulates anoikis in human colon tumor cell lines

T. Christopher Windham; Nila U. Parikh; Doris R. Siwak; Justin M. Summy; David J. McConkey; Alan J. Kraker; Gary E. Gallick

Src is a non-receptor protein tyrosine kinase, the expression and activity of which is increased in >80% of human colon cancers with respect to normal colonic epithelium. Previous studies from this and other laboratories have demonstrated that Src activity contributes to tumorigenicity of established colon adenocarcinoma cell lines. Src participates in the regulation of many signal transduction pathways, among which are those leading to cellular survival. In this study, we addressed the potential role of Src activation to a specific aspect of tumor cell survival, resistance to detachment-induced apoptosis (anoikis). Using five colon tumor cell lines with different biologic properties and genetic alterations, we demonstrate that expression and activity of Src corresponds with resistance to anoikis. Enforced expression of activated Src in subclones of SW480 cells (of low intrinsic Src expression and activity) increases resistance to anoikis; whereas decreased Src expression in HT29 cells (of high Src expression and activity) by transfection with anti-sense Src expression vectors increases susceptibility to anoikis. In contrast, increasing or decreasing Src expression had no effect on susceptibility to staurosporine-induced apoptosis in attached cells. PD173955, a Src family-specific tyrosine kinase inhibitor, increases the susceptibility of HT29 cells to anoikis in a dose- and time-dependent manner. Increasing Src expression and activity led to increased phosphorylation of Akt, a mediator of cellular survival pathways, whereas decreasing Src activity led to decreased Akt phosphorylation. In colon tumor cells with high Src activity, the PI3 kinase inhibitor LY 294002 sensitized cells to anoikis. These results suggest that Src activation may contribute to colon tumor progression and metastasis in part by activating Akt-mediated survival pathways that decrease sensitivity of detached cells to anoikis.


Clinical Cancer Research | 2006

Treatment for advanced tumors: SRC reclaims center stage.

Justin M. Summy; Gary E. Gallick

The non–receptor protein tyrosine, Src, is a 60-kDa protein that is the archetypal member of a nine-gene family, including Src, Yes, Fyn, Lyn, Lck, Hck, Fgr, Blk, and Yrk, that plays a critical role in regulation of proliferation, differentiation, migration, adhesion, invasion, angiogenesis, and


Cancer Research | 2005

CXCL-12/Stromal Cell–Derived Factor-1α Transactivates HER2-neu in Breast Cancer Cells by a Novel Pathway Involving Src Kinase Activation

Neslihan Cabioglu; Justin M. Summy; Claudia P. Miller; Nila U. Parikh; Aysegul A. Sahin; Sitki Tuzlali; Kevin Pumiglia; Gary E. Gallick; Janet E. Price

Experimental evidence suggests that CXCR4, a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1alpha (SDF-1alpha), plays a role in breast cancer metastasis. Transactivation of HER2-neu by G protein-coupled receptor activation has been reported as a ligand-independent mechanism of activating tyrosine kinase receptors. We found that SDF-1alpha transactivated HER2-neu in the breast cancer cell lines MDA-MB-361 and SKBR3, which express both CXCR4 and HER2-neu. AMD3100, a CXCR4 inhibitor, PKI 166, an epidermal growth factor receptor/HER2-neu tyrosine kinase inhibitor, and PP2, a Src kinase inhibitor, each blocked SDF-1alpha-induced HER2-neu phosphorylation. Blocking Src kinase, with PP2 or using a kinase-inactive Src construct, and inhibiting epidermal growth factor receptor/HER2-neu signaling with PKI 166 each inhibited SDF-1alpha-stimulated cell migration. We report a novel mechanism of HER2-neu transactivation through SDF-1alpha stimulation of CXCR4 that involves Src kinase activation.


Nanomedicine: Nanotechnology, Biology and Medicine | 2010

Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles

Melissa Hirsch Kuchma; Christopher B. Komanski; Jimmie Colon; Andrew Teblum; Artëm E. Masunov; Beatrice Alvarado; Suresh Babu; Sudipta Seal; Justin M. Summy; Cheryl H. Baker

In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an S(N)2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics.


Molecular Cancer Therapeutics | 2005

AP23846, a novel and highly potent Src family kinase inhibitor, reduces vascular endothelial growth factor and interleukin-8 expression in human solid tumor cell lines and abrogates downstream angiogenic processes

Justin M. Summy; Jose G. Trevino; Donald P. Lesslie; Cheryl H. Baker; William C. Shakespeare; Yihan Wang; Raji Sundaramoorthi; Chester A. Metcalf; Jeffrey Keats; Tomi K. Sawyer; Gary E. Gallick

c-Src is frequently activated in human malignancies, including colon, breast, and pancreatic carcinomas. Several recent studies have shown that activation of Src family kinases leads to tumor progression and metastasis by increasing cellular migration and invasion, promoting cell growth and survival, and deregulating expression of proangiogenic molecules. Therefore, selective inhibitors of Src are being developed for cancer therapy. In this study, we characterize the biological effects of the novel ATP-based Src family kinase inhibitor, AP23846, in tumor cells with high Src activity. As a lead compound, AP23846 is a potent c-Src kinase inhibitor (IC50 ∼0.5 nmol/L in vitro, ∼10-fold more potent than PP2, the most widely used commercially available Src family kinase inhibitor). At concentrations of 1 μmol/L, AP23846 led to complete Src inhibition for 48 hours in cells. No cytotoxicity was observed under these conditions, although proliferation rates were slower. Therefore, this was an excellent inhibitor to examine Src-regulated signaling pathways in tumor cells. AP23846 reduced cellular migration, vascular endothelial growth factor, and interleukin-8 in a dose-dependent fashion in pancreatic adenocarcinoma cells grown in vitro. Correspondingly, cell culture supernatants from L3.6pl pancreatic adenocarcinoma cells pretreated with AP23846 failed to promote migration of hepatic endothelial cells in vitro and failed to support angiogenesis into gel foams implanted s.c. in mice in vivo. These results suggest that Src inhibitors affect biological properties of tumor progression and may be useful as cancer therapeutic agents in more advanced disease. [Mol Cancer Ther 2005;4(12):1900–11]


Pancreas | 2005

c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK.

Justin M. Summy; Jose G. Trevino; Cheryl H. Baker; Gary E. Gallick

Objectives: Multiple signaling proteins may be aberrantly activated and/or overexpressed in pancreatic tumors, including the nonreceptor protein tyrosine kinase Src. The goal of this study was to determine the role of Src in regulating VEGF expression and angiogenic potential in pancreatic cancer cell lines. Methods: Src activity was inhibited using the Src family kinase selective inhibitor PP2, and c-Src expression was down-regulated via siRNA. The activities of downstream signaling molecules phosphatidyl inositol 3′-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK) were disrupted via selective inhibitors. In vivo angiogenesis was assessed through the use of a gel-foam assay. Results: Inhibition of Src activity or expression decreases both constitutive and EGF-induced VEGF production. Both the PI3K/Akt and p38 MAPK pathways are activated in a Src family kinase-dependent fashion on EGF-R activation and are important for EGF-mediated VEGF production in pancreatic cancer cells. Additionally, media from Src-inhibited L3.6pl cells fail to promote angiogenesis into gel foams implanted subcutaneously into mice, whereas media from control cells promote a robust angiogenic response. Conclusions: Src activity contributes to constitutive and EGF-induced VEGF expression and angiogenic potential in pancreatic cancer cells. Therefore, Src may be a viable target for antiangiogenesis therapy in pancreatic cancer.


Mini-reviews in Medicinal Chemistry | 2006

Src Inhibitors as Potential Therapeutic Agents for Human Cancers

Jose G. Trevino; Justin M. Summy; Gary E. Gallick

Selective inhibitors of the Src family of protein tyrosine kinases have been developed as therapeutic agents for human tumors, some of which are now in various stages of clinical trial. In this review, recently described novel small molecule ATP-competitive Src inhibitors are discussed, with an emphasis on their potential use as therapeutic inhibitors for advanced-stage malignancies.


Journal of Clinical Investigation | 2007

AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts

Jing Zhang; Serk In Park; Marlene C. Artime; Justin M. Summy; Ami Shah; Joshua A. Bomser; Andrea Dorfleutner; Daniel C. Flynn; Gary E. Gallick

The actin filament-associated protein AFAP-110 is an actin cross-linking protein first identified as a substrate of the viral oncogene v-Src. AFAP-110 regulates actin cytoskeleton integrity but also functions as an adaptor protein that affects crosstalk between Src and PKC. Here we investigated the roles of AFAP-110 in the tumorigenic process of prostate carcinoma. Using immunohistochemistry of human tissue arrays, we found that AFAP-110 was absent or expressed at very low levels in normal prostatic epithelium and benign prostatic hyperplasia but significantly increased in prostate carcinomas. The level of AFAP-110 in carcinomas correlated with the Gleason scores. Downregulation of AFAP-110 in PC3 prostate cancer cells inhibited cell proliferation in vitro and tumorigenicity and growth in orthotopic nude mouse models. Furthermore, downmodulation of AFAP-110 resulted in decreased cell-matrix adhesion and cell migration, defective focal adhesions, and reduced integrin beta1 expression. Reintroduction of avian AFAP-110 or a mutant disabling its interaction with Src restored these properties. However, expression of an AFAP-110 lacking the PKC-interacting domain failed to restore properties of parental cells. Thus, increased expression of AFAP-110 is associated with progressive stages of prostate cancer and is critical for tumorigenic growth, in part by regulating focal contacts in a PKC-dependent mechanism.

Collaboration


Dive into the Justin M. Summy's collaboration.

Top Co-Authors

Avatar

Gary E. Gallick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jose G. Trevino

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cheryl H. Baker

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Donald P. Lesslie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nila U. Parikh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ami Shah

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Francis Y. Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael J. Gray

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah F. Connelly

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge