Justin Marble
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin Marble.
Chemosphere | 2008
Mark L. Brusseau; E. L. Difilippo; Justin Marble; Mart Oostrom
A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimal mass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.
Journal of Contaminant Hydrology | 2008
Justin Marble; E. L. Difilippo; Zhihui Zhang; Geoffrey R. Tick; Mark L. Brusseau
The use of a lumped-process mathematical model to simulate the complete dissolution of immiscible liquid non-uniformly distributed in physically heterogeneous porous-media systems was investigated. The study focused specifically on systems wherein immiscible liquid was poorly accessible to flowing water. Two representative, idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. As expected, effluent concentrations were significantly less than aqueous solubility due to dilution and by-pass flow effects. The measured data were simulated with two mathematical models, one based on a simple description of the system and one based on a more complex description. The permeability field and the distribution of the immiscible-liquid zones were represented explicitly in the more complex, distributed-process model. The dissolution rate coefficient in this case represents only the impact of local-scale (and smaller) processes on dissolution, and the parameter values were accordingly obtained from the results of experiments conducted with one-dimensional, homogeneously-packed columns. In contrast, the system was conceptualized as a pseudo-homogeneous medium with immiscible liquid uniformly distributed throughout the system for the simpler, lumped-process model. With this approach, all factors that influence immiscible-liquid dissolution are incorporated into the calibrated dissolution rate coefficient, which in such cases serves as a composite or lumped term. The calibrated dissolution rate coefficients obtained from the simulations conducted with the lumped-process model were approximately two to three orders-of-magnitude smaller than the independently-determined values used for the simulations conducted with the distributed-process model. This disparity reflects the difference in implicit versus explicit consideration of the larger-scale factors influencing immiscible-liquid dissolution in the systems.
Journal of Contaminant Hydrology | 2010
Justin Marble; Kenneth C. Carroll; Hilary Janousek; Mark L. Brusseau
The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.
Water Resources Research | 2015
Kenneth C. Carroll; Kieran McDonald; Justin Marble; A.E. Russo; Mark L. Brusseau
Multiphase-fluid distribution and flow is inherent in numerous areas of hydrology. Yet, pore-scale characterization of transitions between two and three immiscible-fluids is limited. The objective of this study was to examine the impact of such transitions on the pore-scale configuration of organic liquid in a multi-fluid system comprising natural porous media. Three-dimensional images of an organic liquid (trichloroethene) in two-phase (organic-liquid/water) and three-phase (air/organic-liquid/water) systems were obtained using X-ray microtomography before and after drainage and imbibition. Upon transition from a two-phase to a three-phase system, a significant portion of the organic liquid (intermediate wetting fluid) was observed to exist as lenses and films in contact with air (nonwetting fluid). In these cases, the air was either encased by or contiguous to the organic liquid. The presence of air resulted in an increase in the surface-area-to-volume ratios for the organic-liquid blobs. Upon imbibition, the air was displaced downgradient, and concomitantly, the morphology of the organic-liquid blobs no longer in contact with air reverted to that characteristic of a two-phase distribution (i.e., more spherical blobs and ganglia). This change in morphology resulted in a reduction in the surface-area-to-volume ratio. These results illustrate the impact of transitions between two-phase and three-phase conditions on fluid configuration, and they demonstrate the malleable nature of fluid configuration under dynamic, multiphase-flow conditions. The results have implications for characterizing and modeling pore-scale flow and mass-transfer processes.
Environmental Science & Technology | 2009
Mark L. Brusseau; Matt Narter; G. Schnaar; Justin Marble
Water Air and Soil Pollution | 2014
Justin Marble; Mark L. Brusseau; Kenneth C. Carroll; M. Plaschke; L. Fuhrig; F. Brinker
Archive | 2010
Juliana B. Araujo; Matt Narter; J. Mainhagu; Justin Marble; Mark L. Brusseau
Archive | 2007
Alessandra Russo; Justin Marble; Asami Murao; Mark L. Brusseau
Archive | 2007
E. L. Difilippo; Justin Marble; Geoff Tick; Zhongfei Zhang; Mark L. Brusseau
Archive | 2006
Justin Marble; E. L. Difilippo; Alessandra Russo; Zhongfei Zhang; Mark L. Brusseau