Justin Middleton
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin Middleton.
PLOS ONE | 2013
Michela Garofalo; Young Jun Jeon; Gerard J. Nuovo; Justin Middleton; Paola Secchiero; Pooja Joshi; Hansjuerg Alder; Natalya Nazaryan; Gianpiero Di Leva; Giulia Romano; Melissa Crawford; Patrick Nana-Sinkam; Carlo M. Croce
Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Ri Cui; Wei Meng; Hui Lung Sun; Taewan Kim; Zhenqing Ye; Matteo Fassan; Young Jun Jeon; Bin Li; Caterina Vicentini; Yong Peng; Tae Jin Lee; Zhenghua Luo; Lan Liu; Dongyuan Xu; Esmerina Tili; Victor X. Jin; Justin Middleton; Arnab Chakravarti; Tim Lautenschlaeger; Carlo M. Croce
Significance Aberrant microRNA (miRNA) expression is involved in tumorigenesis, and miR-224 was observed to be up-regulated in certain tumor types. However, the role of miR-224 in the pathogenesis of lung cancer remains poorly understood. Here, we comprehensively analyzed and revealed mechanisms of miR-224 up-regulation and its oncogenic role in nonsmall cell lung cancer (NSCLC). We showed that miR-224 promotes cellular migratory, invasive, and proliferative capacity and tumor growth both in vitro and in vivo. Furthermore, we identified TNFα-induced protein 1 and SMAD4 as targets of miR-224. In addition, up-regulated miR-224 expression in NSCLC is partially controlled by its promoter region’s hypomethylation and activated ERK signaling. Our finding suggests that targeting miR-224 might be a promising therapeutic strategy in the treatment of NSCLC. Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advancements and improvements in surgical and medical treatments, the survival rate of lung cancer patients remains frustratingly poor. Local control for early-stage nonsmall cell lung cancer (NSCLC) has dramatically improved over the last decades for both operable and inoperable patients. However, the molecular mechanisms of NSCLC invasion leading to regional and distant disease spread remain poorly understood. Here, we identify microRNA-224 (miR-224) to be significantly up-regulated in NSCLC tissues, particularly in resected NSCLC metastasis. Increased miR-224 expression promotes cell migration, invasion, and proliferation by directly targeting the tumor suppressors TNFα-induced protein 1 (TNFAIP1) and SMAD4. In concordance with in vitro studies, mouse xenograft studies validated that miR-224 functions as a potent oncogenic miRNA in NSCLC in vivo. Moreover, we found promoter hypomethylation and activated ERK signaling to be involved in the regulation of miR-224 expression in NSCLC. Up-regulated miR-224, thus, facilitates tumor progression by shifting the equilibrium of the partially antagonist functions of SMAD4 and TNFAIP1 toward enhanced invasion and growth in NSCLC. Our findings indicate that targeting miR-224 could be effective in the treatment of certain lung cancer patients.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Pooja Joshi; Young Jun Jeon; Alessandro Laganà; Justin Middleton; Paola Secchiero; Michela Garofalo; Carlo M. Croce
Significance Nonsmall cell lung cancer (NSCLC) is one of the deadliest cancers in the world. Although a very small subset of NSCLC patients respond to TNF-related apoptosis-inducing ligand (TRAIL), resistance remains a major hindrance to successful treatment. miRNAs are small noncoding RNAs of ∼24 nt that negatively regulate gene expression. Here, we show that miR-148a is significantly down-regulated in cells with acquired TRAIL resistance. Furthermore, we have determined that miR-148a can sensitize cells to TRAIL and inhibit tumorigenesis by targeting matrix metalloproteinase 15 and Rho-associated kinase 1 protein expression. Thus, miR-148a could be a promising prognostic and therapeutic tool in NSCLC treatment. Nonsmall cell lung cancer (NSCLC) is one of the leading causes of death worldwide. TNF-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in malignant cells without inducing significant toxicity in normal cells. However, several carcinomas, including lung cancer, remain resistant to TRAIL. MicroRNAs (miRNAs) are small noncoding RNAs of ∼24 nt that block mRNA translation and/or negatively regulate its stability. They are often aberrantly expressed in cancer and have been implicated in increasing susceptibility or resistance to TRAIL-induced apoptosis by inhibiting key functional proteins. Here we show that miR-148a is down-regulated in cells with acquired TRAIL-resistance compared with TRAIL-sensitive cells. Enforced expression of miR-148a sensitized cells to TRAIL and reduced lung tumorigenesis in vitro and in vivo through the down-modulation of matrix metalloproteinase 15 (MMP15) and Rho-associated kinase 1 (ROCK1). These findings suggest that miR-148a acts as a tumor suppressor and might have therapeutic application in the treatment of NSCLC.
wjm | 2014
Pooja Joshi; Justin Middleton; Young Jun Jeon; Michela Garofalo
MicroRNAs have become recognized as key players in the development of cancer. They are a family of small non-coding RNAs that can negatively regulate the expression of cancer-related genes by sequence-selective targeting of mRNAs, leading to either mRNA degradation or translational repression. Lung cancer is the leading cause of cancer-related death worldwide with a substantially low survival rate. MicroRNAs have been confirmed to play roles in lung cancer development, epithelial-mesenchymal transition and response to therapy. They are also being studied for their future use as diagnostic and prognostic biomarkers and as potential therapeutic targets. In this review we focus on the role of dysregulated microRNA expression in lung tumorigenesis. We also discuss the role of microRNAs in therapeutic resistance and as biomarkers. We further look into the progress made and challenges remaining in using microRNAs for therapy in lung cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Young Jun Jeon; Justin Middleton; Taewan Kim; Alessandro Laganà; Claudia Piovan; Paola Secchiero; Gerard J. Nuovo; Ri Cui; Pooja Joshi; Giulia Romano; Gianpiero Di Leva; Bum Kyu Lee; Hui Lung Sun; Yonghwan Kim; Paolo Fadda; Hansjuerg Alder; Michela Garofalo; Carlo M. Croce
Significance TRAIL (TNF-related apoptosis-inducing ligand) is a promising antitumor agent effective in a very small subset of lung cancer patients with low toxicity. However, the majority of lung tumors are TRAIL-resistant and very little is known about how tumor cells acquire resistance to TRAIL. Here, we show that continuous exposure to subtoxic concentrations of TRAIL induces NF-κB–dependent up-regulation of miR-21, miR-30c, and miR-100, which by silencing caspase-8, caspase-3, TRAF7, and FoxO3a further strengthens the NF-κB signaling, inducing acquired TRAIL resistance. Our findings imply that combinatory therapies of NF-κB inhibitors and TRAIL might be a useful therapy to improve the response of lung cancer to TRAIL. TRAIL (TNF-related apoptosis-inducing ligand) is a promising anticancer agent that can be potentially used as an alternative or complementary therapy because of its specific antitumor activity. However, TRAIL can also stimulate the proliferation of cancer cells through the activation of NF-κB, but the exact mechanism is still poorly understood. In this study, we show that chronic exposure to subtoxic concentrations of TRAIL results in acquired resistance. This resistance is associated with the increase in miR-21, miR-30c, and miR-100 expression, which target tumor-suppressor genes fundamental in the response to TRAIL. Importantly, down-regulation of caspase-8 by miR-21 blocks receptor interacting protein-1 cleavage and induces the activation of NF-κB, which regulates these miRNAs. Thus, TRAIL activates a positive feedback loop that sustains the acquired resistance and causes an aggressive phenotype. Finally, we prove that combinatory treatment of NF-κB inhibitors and TRAIL is able to revert resistance and reduce tumor growth, with important consequences for the clinical practice.
Journal of the National Cancer Institute | 2015
Cristian Taccioli; Michela Garofalo; Hongping Chen; Yubao Jiang; Guidantonio Malagoli Tagliazucchi; Gianpiero Di Leva; Hansjuerg Alder; Paolo Fadda; Justin Middleton; Karl J. Smalley; Tommaso Selmi; Srivatsava Naidu; John L. Farber; Carlo M. Croce; Louise Y.Y. Fong
BACKGROUND Overexpression of microRNA-31 (miR-31) is implicated in the pathogenesis of esophageal squamous cell carcinoma (ESCC), a deadly disease associated with dietary zinc deficiency. Using a rat model that recapitulates features of human ESCC, the mechanism whereby Zn regulates miR-31 expression to promote ESCC is examined. METHODS To inhibit in vivo esophageal miR-31 overexpression in Zn-deficient rats (n = 12-20 per group), locked nucleic acid-modified anti-miR-31 oligonucleotides were administered over five weeks. miR-31 expression was determined by northern blotting, quantitative polymerase chain reaction, and in situ hybridization. Physiological miR-31 targets were identified by microarray analysis and verified by luciferase reporter assay. Cellular proliferation, apoptosis, and expression of inflammation genes were determined by immunoblotting, caspase assays, and immunohistochemistry. The miR-31 promoter in Zn-deficient esophagus was identified by ChIP-seq using an antibody for histone mark H3K4me3. Data were analyzed with t test and analysis of variance. All statistical tests were two-sided. RESULTS In vivo, anti-miR-31 reduced miR-31 overexpression (P = .002) and suppressed the esophageal preneoplasia in Zn-deficient rats. At the same time, the miR-31 target Stk40 was derepressed, thereby inhibiting the STK40-NF-κΒ-controlled inflammatory pathway, with resultant decreased cellular proliferation and activated apoptosis (caspase 3/7 activities, fold change = 10.7, P = .005). This same connection between miR-31 overexpression and STK40/NF-κΒ expression was also documented in human ESCC cell lines. In Zn-deficient esophagus, the miR-31 promoter region and NF-κΒ binding site were activated. Zn replenishment restored the regulation of this genomic region and a normal esophageal phenotype. CONCLUSIONS The data define the in vivo signaling pathway underlying interaction of Zn deficiency and miR-31 overexpression in esophageal neoplasia and provide a mechanistic rationale for miR-31 as a therapeutic target for ESCC.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Yi Seok Chang; Swati P. Jalgaonkar; Justin Middleton; Tsonwin Hai
Significance Chemotherapy is a double-edged sword. It is anticancer because of its cytotoxicity. Paradoxically, by increasing chemoresistance and cancer metastasis, it is also pro-cancer. However, the mechanisms underlying chemotherapy-induced procancer activities are not well understood. Here we present data that provide mechanistic explanations for the ability of paclitaxel (PTX), a frontline chemotherapeutic agent, to exacerbate metastasis in mouse models of breast cancer. Importantly, Atf3, a stress-inducible gene, in the noncancer host cells is necessary for this PTX effect. Analyses of publicly available datasets suggest that our data from mouse models have relevance to human cancers. Thus, ATF3 links a chemotherapeutic agent—a stressor—to pro-metastatic changes in the host cells. Dampening the effect of ATF3 may improve the efficacy of chemotherapy. Chemotherapy is a double-edged sword. It is anticancer because of its cytotoxicity. Paradoxically, by increasing chemoresistance and cancer metastasis, it is also procancer. However, the underlying mechanisms for chemotherapy-induced procancer activities are not well understood. Here we describe the ability of paclitaxel (PTX), a frontline chemotherapeutic agent, to exacerbate metastasis in mouse models of breast cancer. We demonstrate that, despite the apparent benefit of reducing tumor size, PTX increased the circulating tumor cells in the blood and enhanced the metastatic burden at the lung. At the primary tumor, PTX increased the abundance of the tumor microenvironment of metastasis, a landmark microanatomical structure at the microvasculature where cancer cells enter the blood stream. At the metastatic lung, PTX improved the tissue microenvironment (the “soil”) for cancer cells (the “seeds”) to thrive; these changes include increased inflammatory monocytes and reduced cytotoxicity. Importantly, these changes in the primary tumor and the metastatic lung were all dependent on Atf3, a stress-inducible gene, in the noncancer host cells. Together, our data provide mechanistic insights into the procancer effect of chemotherapy, explaining its paradox in the context of the seed-and-soil theory. Analyses of public datasets suggest that our data may have relevance to human cancers. Thus, ATF3 in the host cells links a chemotherapeutic agent—a stressor—to immune modulation and cancer metastasis. Dampening the effect of ATF3 may improve the efficacy of chemotherapy.
Scientific Reports | 2017
Srivatsava Naidu; Lei Shi; Peter Magee; Justin Middleton; Alessandro Laganà; Sudhakar Sahoo; Hui Sun Leong; Melanie Galvin; Kristopher K. Frese; Caroline Dive; Vincenza Guzzardo; Matteo Fassan; Michela Garofalo
In NSCLC alterations in PDGF receptors are markers of worst prognosis and efficient targeting of these receptors is yet to be achieved. In this study, we explored PDGFR-regulated microRNAs demonstrating that miR-23b cluster and miR-125a-5p are downregulated by increased expression of PDGFR-α or PDGFR-β in NSCLC cells. Mechanistically, the expression of these microRNAs is positively regulated by p53 and negatively modulated by NF-kB p65. Forced expression of miR-23b cluster or miR-125a-5p enhanced drug sensitivity and suppressed invasiveness of NSCLC cells by silencing several genes involved in oncogenic KRAS and NF-kB pathways, including SOS1, GRB2, IQGAP1, RALA, RAF-1, IKKβ, AKT2, ERK2 and KRAS itself. Of note, an inverse correlation between miR-23b cluster, miR-125a-5p and respective target genes was also found in vivo in a large dataset of lung adenocarcinoma samples. Furthermore, in vivo delivery of miR-23b cluster or miR-125a-5p significantly repressed tumour growth in a highly aggressive NSCLC circulating tumour cell (CTC) patient derived explant (CDX) mouse model. In conclusion, our finding sheds light on the PDGFR signaling and endorses the possibility to employ miR-23b cluster and miR-125a-5p as therapeutic tools to silence simultaneously a range of redundant pathways and main effectors of tumorigenesis in NSCLC.
Cell Death and Disease | 2018
Lei Shi; Justin Middleton; Young Jun Jeon; Peter Magee; Dario Veneziano; Alessandro Laganà; Hui-Sun Leong; Sudhakar Sahoo; Matteo Fassan; Richard Booton; Rajesh Shah; Philip A. J. Crosbie; Michela Garofalo
Oncogenic KRAS induces tumor onset and development by modulating gene expression via different molecular mechanisms. MicroRNAs (miRNAs) are small non-coding RNAs that have been established as main players in tumorigenesis. By overexpressing wild type or mutant KRAS (KRASG12D) and using inducible human and mouse cell lines, we analyzed KRAS-regulated microRNAs in non-small-cell lung cancer (NSCLC). We show that miR-30c and miR-21 are significantly upregulated by both KRAS isoforms and induce drug resistance and enhance cell migration/invasion via inhibiting crucial tumor suppressor genes, such as NF1, RASA1, BID, and RASSF8. MiR-30c and miR-21 levels were significantly elevated in tumors from patients that underwent surgical resection of early stages NSCLC compared to normal lung and in plasma from the same patients. Systemic delivery of LNA-anti-miR-21 in combination with cisplatin in vivo completely suppressed the development of lung tumors in a mouse model of lung cancer. Mechanistically, we demonstrated that ELK1 is responsible for miR-30c and miR-21 transcriptional activation by direct binding to the miRNA proximal promoter regions. In summary, our study defines that miR-30c and miR-21 may be valid biomarkers for early NSCLC detection and their silencing could be beneficial for therapeutic applications.
International Journal of Molecular Sciences | 2018
Justin Middleton; Daniel Stover; Tsonwin Hai
An emerging picture in cancer biology is that, paradoxically, chemotherapy can actively induce changes that favor cancer progression. These pro-cancer changes can be either inside (intrinsic) or outside (extrinsic) the cancer cells. In this review, we will discuss the extrinsic pro-cancer effect of chemotherapy; that is, the effect of chemotherapy on the non-cancer host cells to promote cancer progression. We will focus on metastasis, and will first discuss recent data from mouse models of breast cancer. Despite reducing the size of primary tumors, chemotherapy changes the tumor microenvironment, resulting in an increased escape of cancer cells into the blood stream. Furthermore, chemotherapry changes the tissue microenvironment at the distant sites, making it more hospitable to cancer cells upon their arrival. We will then discuss the idea and evidence that these devastating pro-metastatic effects of chemotherapy can be explained in the context of adaptive-response. At the end, we will discuss the potential relevance of these mouse data to human breast cancer and their implication on chemotherapy in the clinic.