Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Migacz is active.

Publication


Featured researches published by Justin Migacz.


Retina-the Journal of Retinal and Vitreous Diseases | 2013

Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device

Paul Hahn; Justin Migacz; Rachelle OʼConnell; Shelley Day; Annie Lee; Phoebe Lin; Robin R. Vann; Anthony N. Kuo; Sharon Fekrat; Prithvi Mruthyunjaya; Eric A. Postel; Joseph A. Izatt; Cynthia A. Toth

Purpose: The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Methods: Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board–approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Results: Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with ≥80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients. Conclusion: This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.


Biomedical Optics Express | 2016

Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

Iwona Gorczynska; Justin Migacz; Robert J. Zawadzki; Arlie G. Capps; John S. Werner

We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using a contrast-to-noise (CNR) metric to assess the capability of the three methods to visualize the choriocapillaris layer. For evaluation of the static tissue noise suppression in OCTA images we proposed to calculate CNR between the photoreceptor/RPE complex and the choriocapillaris layer. Finally, we demonstrated that implementation of intensity-based OCT imaging and OCT angiography methods allows for visualization of retinal and choroidal vascular layers known from anatomic studies in retinal preparations. OCT projection imaging of data flattened to selected retinal layers was implemented to visualize retinal and choroidal vasculature. User guided vessel tracing was applied to segment the retinal vasculature. The results were visualized in a form of a skeletonized 3D model.


Ophthalmic Surgery Lasers & Imaging | 2011

The Use of Optical Coherence Tomography in Intraoperative Ophthalmic Imaging

Paul Hahn; Justin Migacz; Rachelle O’Connell; Ramiro S. Maldonado; Joseph A. Izatt; Cynthia A. Toth

Optical coherence tomography (OCT) has transformed diagnostic ophthalmic imaging but until recently has been limited to the clinic setting. The development of spectral-domain OCT (SD-OCT), with its improved speed and resolution, along with the development of a handheld OCT scanner, enabled portable imaging of patients unable to sit in a conventional tabletop scanner. This handheld SD-OCT unit has proven useful in examinations under anesthesia and, more recently, in intraoperative imaging of preoperative and postoperative manipulations. Recently, several groups have pioneered the development of novel OCT modalities, such as microscope-mounted OCT systems. Although still immature, the development of these systems is directed toward real-time imaging of surgical maneuvers in the intraoperative setting. This article reviews intraoperative imaging of the posterior and anterior segment using the handheld SD-OCT and recent advances toward real-time microscope-mounted intrasurgical imaging.


Graefes Archive for Clinical and Experimental Ophthalmology | 2013

Unprocessed real-time imaging of vitreoretinal surgical maneuvers using a microscope-integrated spectral-domain optical coherence tomography system

Paul Hahn; Justin Migacz; Rachelle O’Connell; Joseph A. Izatt; Cynthia A. Toth

BackgroundWe have recently developed a microscope-integrated spectral-domain optical coherence tomography (MIOCT) device towards intrasurgical cross-sectional imaging of surgical maneuvers. In this report, we explore the capability of MIOCT to acquire real-time video imaging of vitreoretinal surgical maneuvers without post-processing modifications.MethodsStandard 3-port vitrectomy was performed in human during scheduled surgery as well as in cadaveric porcine eyes. MIOCT imaging of human subjects was performed in healthy normal volunteers and intraoperatively at a normal pause immediately following surgical manipulations, under an Institutional Review Board-approved protocol, with informed consent from all subjects. Video MIOCT imaging of live surgical manipulations was performed in cadaveric porcine eyes by carefully aligning B-scans with instrument orientation and movement. Inverted imaging was performed by lengthening of the reference arm to a position beyond the choroid.ResultsUnprocessed MIOCT imaging was successfully obtained in healthy human volunteers and in human patients undergoing surgery, with visualization of post-surgical changes in unprocessed single B-scans. Real-time, unprocessed MIOCT video imaging was successfully obtained in cadaveric porcine eyes during brushing of the retina with the Tano scraper, peeling of superficial retinal tissue with intraocular forceps, and separation of the posterior hyaloid face. Real-time inverted imaging enabled imaging without complex conjugate artifacts.ConclusionsMIOCT is capable of unprocessed imaging of the macula in human patients undergoing surgery and of unprocessed, real-time, video imaging of surgical maneuvers in model eyes. These capabilities represent an important step towards development of MIOCT for efficient, real-time imaging of manipulations during human surgery.


Optics Letters | 2010

Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources

Al-Hafeez Dhalla; Justin Migacz; Joseph A. Izatt

The continuing improvement of high-speed area-scan cameras has made possible the construction of parallel optical coherence tomography (OCT) systems that are competitive with the fastest demonstrated swept-source OCT systems. Unfortunately, when imaging through turbid media using a partially coherent source, parallel OCT suffers resolution loss from coherent multiple scattering, a phenomenon known as crosstalk. We demonstrate the use of a full-field OCT system employing multimode fiber in the illumination arm to reduce the spatial coherence of a partially coherent source. By reducing the spatial coherence area below the systems lateral resolution, we create a spatial coherence gate that rejects these multiply scattered photons. We quantify the image quality and resolution improvement of this method by comparing images of a USAF test chart acquired beneath turbid phantoms using both coherent and incoherent illumination and computing the resulting modulation transfer functions. We demonstrate the feasibility of this method for imaging biological specimens by imaging a Drosophila melanogaster sample.


Optics Letters | 2010

Multiscale optics for enhanced light collection from a point source

Rachel Noek; Caleb Knoernschild; Justin Migacz; Taehyun Kim; Peter Maunz; True Merrill; Harley Hayden; C. S. Pai; Jungsang Kim

High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.


Investigative Ophthalmology & Visual Science | 2017

The Properties of Outer Retinal Band Three Investigated With Adaptive-Optics Optical Coherence Tomography

Ravi S. Jonnal; Iwona Gorczynska; Justin Migacz; Mehdi Azimipour; Robert J. Zawadzki; John S. Werner

Purpose Optical coherence tomographys (OCT) third outer retinal band has been attributed to the zone of interdigitation between RPE cells and cone outer segments. The purpose of this paper is to investigate the structure of this band with adaptive optics (AO)-OCT. Methods Using AO-OCT, images were obtained from two subjects. Axial structure was characterized by measuring band 3 thickness and separation between bands 2 and 3 in segmented cones. Lateral structure was characterized by correlation of band 3 with band 2 and comparison of their power spectra. Band thickness and separation were also measured in a clinical OCT image of one subject. Results Band 3 thickness ranged from 4.3 to 6.4 μm. Band 2 correlations ranged between 0.35 and 0.41 and power spectra of both bands confirmed peak frequencies that agree with histologic density measurements. In clinical images, band 3 thickness was between 14 and 19 μm. Measurements of AO-OCT of interband distance were lower than our corresponding clinical OCT measurements. Conclusions Band 3 originates from a structure with axial extent similar to a single surface. Correlation with band 2 suggests an origin within the cone photoreceptor. These two observations indicate that band 3 corresponds predominantly to cone outer segment tips (COST). Conventional OCT may overestimate both the thickness of band 3 and outer segment length.


Proceedings of SPIE | 2017

Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system

Iwona Gorczynska; Justin Migacz; Ravi S. Jonnal; Robert J. Zawadzki; Raju Poddar; John S. Werner

We demonstrate OCT angiography (OCTA) and Doppler OCT imaging of the choroid in the eyes of two healthy volunteers and in a geographic atrophy case. We show that visualization of specific choroidal layers requires selection of appropriate OCTA methods. We investigate how imaging speed, B-scan averaging and scanning density influence visualization of various choroidal vessels. We introduce spatial power spectrum analysis of OCT en face angiographic projections as a method of quantitative analysis of choroicapillaris morphology. We explore the possibility of Doppler OCT imaging to provide information about directionality of blood flow in choroidal vessels. To achieve these goals, we have developed OCT systems utilizing an FDML laser operating at 1.7 MHz sweep rate, at 1060 nm center wavelength, and with 7.5 μm axial imaging resolution. A correlation mapping OCA method was implemented for visualization of the vessels. Joint Spectral and Time domain OCT (STdOCT) technique was used for Doppler OCT imaging.


Optical Coherence Imaging Techniques and Imaging in Scattering Media (2015), paper 954112 | 2015

En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods

Iwona Gorczynska; Justin Migacz; Robert J. Zawadzki; Narendran Sudheendran; Yifan Jian; Pavan Kumar Tiruveedhula; Austin Roorda; John S. Werner

We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.


Optics Letters | 2016

Long working distance OCT with a compact 2f retinal scanning configuration for pediatric imaging

Oscar Carrasco-Zevallos; Ruobing Qian; Niklas Gahm; Justin Migacz; Cynthia A. Toth; Joseph A. Izatt

Young and/or autistic children cannot be imaged with tabletop or handheld optical coherence tomography (OCT) because of their lack of attention and fear of large objects close to their face. We demonstrate a prototype retinal swept-source OCT system with a long working distance (from the last optical element to the subjects eye) to facilitate pediatric imaging. To reduce the number of optical elements and axial length compared to the traditional 4f telescope, we employ a compact 2f retinal scanning configuration and achieve a working distance of 350 mm with a 16° OCT field of view. We test our prototype system on pediatric and adult subjects.

Collaboration


Dive into the Justin Migacz's collaboration.

Top Co-Authors

Avatar

John S. Werner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi S. Jonnal

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge