Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin N. Murdock is active.

Publication


Featured researches published by Justin N. Murdock.


Applied Spectroscopy Reviews | 2009

FT-IR Microspectroscopy Enhances Biological and Ecological Analysis of Algae

Justin N. Murdock; David L. Wetzel

Abstract Fourier Transform Infrared (FT-IR) microspectroscopy provides an in situ, nondestructive chemical analysis of individual algal cells. Algae play key roles in nutrient cycling and energy flow through aquatic ecosystems and are pivotal in the sequestration of inorganic nutrients (e.g., carbon, nitrogen, and phosphorus) and transformation into organic forms. However, most methods used to measure algal nutritional and physiological changes are limited to detecting whole community responses because of the relatively large quantity of material needed for analysis (i.e., milligrams to grams). The spatial resolution achievable with infrared microspectroscopy allows for the analysis of macromolecular pools (e.g., proteins, lipids, carbohydrates) in individual cells that allows species specific measurements within heterogeneous microscopic communities. Initial applications characterized molecular pools within marine macroalgae and have since progressed toward ecologically based questions concerning algal physiological responses to changing nutrient availability in marine and freshwater ecosystems.


Journal of Phycology | 2007

LINKING BENTHIC ALGAL BIOMASS TO STREAM SUBSTRATUM TOPOGRAPHY1

Justin N. Murdock; Walter K. Dodds

The physical properties of substrata significantly influence benthic algal development. We explored the relationships among substratum surface texture and orientation with epilithic microphytobenthic biomass accumulation at the whole‐substratum and micrometer scales. Unglazed clay tiles set at three orientations (horizontal, vertical, and 45°), and six substrata of varying surface roughness were deployed in a prairie stream for 3 weeks. Substrata were analyzed for loosely attached, adnate, and total benthic algal biomass as chl a, and confocal laser scanning microscopy was used to measure substrata microtopography (i.e., roughness, microscale slope angles, and three‐dimensional surface area). At the whole‐substratum level, vertical substrata collected significantly (P < 0.05) less algal biomass, averaging 34% and 36% less than horizontal and 45° substrata, respectively. Benthic algal biomass was also significantly less on smoother surfaces; glass averaged 29% less biomass than stream rocks. At the microscale level, benthic algal biomass was the greatest at intermediate values, peaking at a mean roughness of approximately 17 μm, a mean microscale slope of 50°, and a projected/areal surface area ratio of 2:1. The proportion of adnate algae increased with surface roughness (26% and 67% for glass and brick, respectively), suggesting that substratum type changes the efficiency of algal removal by brushing. Individual substrata and microsubstrata characteristics can have a strong effect on benthic algae development and potentially affect reach scale algal variability as mediated by geomorphology.


Ecology | 2010

Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought

Justin N. Murdock; Keith B. Gido; Walter K. Dodds; Katie N. Bertrand; Matt R. Whiles

Consumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e., fish and crayfish) on recovery of intermittent prairie streams after drying. In the stream, macroconsumers altered system recovery trajectory by decreasing algal and macroinvertebrate biomass, primary productivity, and benthic nutrient uptake rates. However, macroconsumer influence was transient, and differences between exclosures and controls disappeared after 35 days. Introducing and removing macroconsumers after 28 days resulted mainly in changes to macroinvertebrates. In mesocosms, a dominant consumer (the grazing minnow Phoxinus erythrogaster) reduced macroinvertebrate biomass but had little effect on algal assemblage structure and ecosystem rates during recovery. The weak effect of P. erythrogaster in mesocosms, in contrast to the strong consumer effect in the natural stream, suggests that both timing and diversity of returning consumers are important to their overall influence on stream recovery patterns. Although we found that consumers significantly altered ecosystem structure and function in a system experiencing rapid changes in abiotic and biotic factors following disturbance, consumer effects diminished over time and trajectories converged to similar states with respect to primary producers, in spite of differences in consumer colonization history. Thus, consumer impacts can be substantial in recovering ecosystems and are likely to be dependent on the disturbance regime and diversity of the consumer community.


Journal of The North American Benthological Society | 2011

Dynamic influences of nutrients and grazing fish on periphyton during recovery from flood

Justin N. Murdock; Walter K. Dodds; Keith B. Gido; Matt R. Whiles

Abstract Nutrients and grazers both can regulate benthic algal structure and function in streams, but the relative strength of each factor depends on stream biotic and abiotic conditions. The abundance of stream organisms and nutrient availability can change rapidly after a flood. Thus, nutrient and grazer influences on algal development and how these drivers interact may vary temporally during recovery. We measured benthic structural and functional development for 35 d after a simulated flood in large outdoor mesocosms under a gradient of 6 nutrient loadings crossed with 6 densities of grazing fish (Southern redbelly dace, Phoxinus erythrogaster). Nutrients influenced algal development more than dace did and were better correlated with algal function (area-specific primary productivity and nutrient uptake) than with structure (biomass). Dace influenced all structural variables and biomass-specific gross primary productivity, but their influence was relatively weak and was observed only early in recovery. Dace influence weakened and nutrient influence strengthened during recovery. Understanding context-dependent relationships in postdisturbance community dynamics is essential for predicting ecosystem responses to future changes in nutrient inputs and biodiversity, particularly in systems, such as headwater streams, with frequent disturbance.


Science of The Total Environment | 2012

Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland

Richard E. Lizotte; F. Douglas Shields; Justin N. Murdock; Robert Kröger; Scott S. Knight

We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers.


Hydrobiologia | 2013

Influence of macroconsumers, stream position, and nutrient gradients on invertebrate assemblage development following flooding in intermittent prairie streams

Katie N. Bertrand; Matt R. Whiles; Keith B. Gido; Justin N. Murdock

Climate change in the US Great Plains is expected to result in less frequent but more severe floods. This will affect hydrologic cycles, stream organisms, and ultimately ecosystem structure and function. We examined factors influencing invertebrate assemblages following flooding in 3 reaches (20 pools) of Kings Creek, an intermittent prairie stream on the Konza Prairie Biological Station, using replicated macroconsumer enclosures (fishless, dace, shiners, ambient). Invertebrate densities and biomass increased rapidly following scouring, including rapid colonizing taxa and relatively long-lived taxa, but macroconsumers had no significant effects. Rather, distance, which was negatively correlated with the concentration of dissolved inorganic nitrogen, from the downstream confluence with a larger stream significantly influenced assemblage structure, with higher richness and greater nutrient concentrations closer to the confluence. Results support previous findings that recovery patterns following flooding in this grassland stream are strongly influenced by proximity to refuges. Furthermore, physical rather than biological factors appear more influential in structuring invertebrate assemblages in these frequently disturbed systems. Predicted increases in the intensity and duration of hydrologic disturbances will increase direct impacts on stream communities, relative to indirect effects through potential changes in macroconsumer communities. Human activities that alter refuges may further impede recovery following hydrologic disturbances.


Biogeochemistry | 2007

The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations

Jonathan M. O’Brien; Walter K. Dodds; Kymberly C. Wilson; Justin N. Murdock; Jessica J. Eichmiller


Journal of Geophysical Research | 2008

Nitrogen cycling and metabolism in the thalweg of a prairie river

Walter K. Dodds; Jake J. Beaulieu; Jessica J. Eichmiller; J.R. Fischer; N.R. Franssen; Dolly A. Gudder; A.S. Makinster; Mark J. McCarthy; Justin N. Murdock; Jonathan M. O'Brien; Jennifer L. Tank; Richard W. Sheibley


Ecological Engineering | 2004

Interactions between flow, periphyton, and nutrients in a heavily impacted urban stream: implications for stream restoration effectiveness

Justin N. Murdock; Daniel L. Roelke; Frances P. Gelwick


Oikos | 2009

Disturbance frequency and functional identity mediate ecosystem processes in prairie streams

Katie N. Bertrand; Keith B. Gido; Walter K. Dodds; Justin N. Murdock; Matt R. Whiles

Collaboration


Dive into the Justin N. Murdock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie N. Bertrand

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Matt R. Whiles

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Douglas Shields

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge