Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin R. Ragains is active.

Publication


Featured researches published by Justin R. Ragains.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Single-particle kinetics of influenza virus membrane fusion.

Daniel L. Floyd; Justin R. Ragains; John J. Skehel; Stephen C. Harrison; Antoine M. van Oijen

Membrane fusion is an essential step during entry of enveloped viruses into cells. Conventional fusion assays are generally limited to observation of ensembles of multiple fusion events, confounding more detailed analysis of the sequence of the molecular steps involved. We have developed an in vitro, two-color fluorescence assay to monitor kinetics of single virus particles fusing with a target bilayer on an essentially fluid support. Analysis of lipid- and content-mixing trajectories on a particle-by-particle basis provides evidence for multiple, long-lived kinetic intermediates leading to hemifusion, followed by a single, rate-limiting step to pore formation. We interpret the series of intermediates preceding hemifusion as a result of the requirement that multiple copies of the trimeric hemagglutinin fusion protein be activated to initiate the fusion process.


Science | 2009

Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans.

Kyuhyung Kim; Koji Sato; Mayumi Shibuya; Danna M. Zeiger; Rebecca A. Butcher; Justin R. Ragains; Jon Clardy; Kazushige Touhara; Piali Sengupta

Life Histories to Suit Nematode worms can profoundly manipulate their life histories in several ways. For example, Caenorhabditis elegans has two genders: males and hermaphrodites. Some clues for the evolution of this peculiar mating system have been revealed by Baldi et al. (p. 1002), who turned females of a related species, Caenorhabditis remanei, into hermaphrodites by modifying a gene involved in making sperm and another gene required for activating the spermatids. In most animals, the germ line is fully established during adulthood and a reproductive period is determined, at least in part, by aging of the germ line and the viability of oocytes. The reproductive longevity of hermaphrodite C. elegans can be increased at least 15-fold by starvation. Angelo and Van Gilst (p. 954, published online 27 August; see the Perspective by Ogawa and Sommer) found that in starved worms, the germline component of the reproductive system is actively killed, with the exception of a small set of preserved stem cells. When the worms are able to feed again, these cells regenerate into an entirely new and functional germ line. But this is not all. Kim et al. (p. 994, published online 1 October; see the Perspective by Ogawa and Sommer) show that subsets of the complex mixture of structurally related molecules in dauer pheromone act via distinct G protein–coupled receptors either to initiate longterm effects on development and physiology by modulating the neuroendocrine axis, or to trigger short-term acute effects on behavior by altering neuronal responses. Chemical signals that determine alternative nematode developmental programs act via two G protein–coupled receptors. Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)–coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components

Rebecca A. Butcher; Justin R. Ragains; Edward Kim; Jon Clardy

In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered “nonaging” because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.


ACS Chemical Biology | 2012

A novel ascaroside controls the parasitic life cycle of the entomopathogenic nematode Heterorhabditis bacteriophora

Jaime H. Noguez; Elizabeth S. Conner; Yue Zhou; Todd A. Ciche; Justin R. Ragains; Rebecca A. Butcher

Entomopathogenic nematodes survive in the soil as stress-resistant infective juveniles that seek out and infect insect hosts. Upon sensing internal host cues, the infective juveniles regurgitate bacterial pathogens from their gut that ultimately kill the host. Inside the host, the nematode develops into a reproductive adult and multiplies until unknown cues trigger the accumulation of infective juveniles. Here, we show that the entomopathogenic nematode Heterorhabditis bacteriophora uses a small-molecule pheromone to control infective juvenile development. The pheromone is structurally related to the dauer pheromone ascarosides that the free-living nematode Caenorhabditis elegans uses to control its development. However, none of the C. elegans ascarosides are effective in H. bacteriophora, suggesting that there is a high degree of species specificity. Our report is the first to show that ascarosides are important regulators of development in a parasitic nematode species. An understanding of chemical signaling in parasitic nematodes may enable the development of chemical tools to control these species.


Angewandte Chemie | 2016

A Visible-Light-Promoted O-Glycosylation with a Thioglycoside Donor

Mark Spell; Kristina Deveaux; Caitlin G. Bresnahan; Bradley L. Bernard; William Sheffield; Revati Kumar; Justin R. Ragains

Visible-light irradiation of 4-p-methoxyphenyl-3-butenylthioglucoside donors in the presence of Umemotos reagent and alcohol acceptors serves as a mild approach to O-glycosylation. Visible-light photocatalysts are not required for activation, and alkyl- and arylthioglycosides not bearing the p-methoxystyrene are inert to these conditions. Experimental and computational evidence for an intervening electron donor-acceptor complex, which is necessary for reactivity, is provided. Yields with primary, secondary, and tertiary alcohol acceptors range from moderate to high. Complete β-selectivity can be attained through neighboring-group participation.


Angewandte Chemie | 2015

Remote Hydroxylation through Radical Translocation and Polar Crossover

Kyle A. Hollister; Elizabeth S. Conner; Mark Spell; Kristina Deveaux; Lea Maneval; Michael W. Beal; Justin R. Ragains

Mild conditions are reported for the hydroxylation of aliphatic C-H bonds through radical translocation, oxidation to carbocation, and nucleophilic trapping with H2O. This remote functionalization employs fac-[Ir(ppy)3] together with Tz(o) sulfonate esters and sulfonamides to facilitate the site-selective replacement of relatively inert C-H bonds with the more synthetically useful C-OH group. The hydroxylation of a range of substrates and the methoxylation of two substrates through 1,6- and 1,7-hydrogen-atom transfer are demonstrated. In addition, a synthesis of the antidepressant fluoxetine using remote hydroxylation as a key step is presented.


Science | 2014

Neurosensory perception of environmental cues modulates sperm motility critical for fertilization.

Katherine McKnight; Hieu D. Hoang; Jeevan K. Prasain; Naoko Brown; Jack Vibbert; Kyle A. Hollister; Ray Moore; Justin R. Ragains; Jeff Reese; Michael A. Miller

Scents and Sperm Once sperm enter the female reproductive tract, they have an arduous task to find an egg at a distant, often concealed, location. McKnight et al. (p. 754) show that Caenorhabditis elegans make this task more or less difficult, depending on pheromones in the external environment. Pheromones perceived by female sensory neurons modulate the synthesis of ovarian prostaglandins, which provide sperm positional information. Thus, environmental cues can indirectly impact sperm function even when the sperm themselves are not directly exposed. Nematode pheromones modulate a neuroendocrine pathway that converts dietary fats into sperm-attracting prostaglandins. Environmental exposures affect gamete function and fertility, but the mechanisms are poorly understood. Here, we show that pheromones sensed by ciliated neurons in the Caenorhabditis elegans nose alter the lipid microenvironment within the oviduct, thereby affecting sperm motility. In favorable environments, pheromone-responsive sensory neurons secrete a transforming growth factor–β ligand called DAF-7, which acts as a neuroendocrine factor that stimulates prostaglandin-endoperoxide synthase [cyclooxygenase (Cox)]–independent prostaglandin synthesis in the ovary. Oocytes secrete F-class prostaglandins that guide sperm toward them. These prostaglandins are also synthesized in Cox knockout mice, raising the possibility that similar mechanisms exist in other animals. Our data indicate that environmental cues perceived by the female nervous system affect sperm function.


Carbohydrate Research | 2013

An α-selective, visible light photocatalytic glycosylation of alcohols with selenoglycosides

Mark Spell; Xiaoping Wang; Amir E. Wahba; Elizabeth S. Conner; Justin R. Ragains

Exceptionally mild procedures for the visible light photocatalytic activation of selenoglycoside donors in the presence of alcohol acceptors have been developed. This process is demonstrated with both 1-phenylselenyl-2,3,4,6-tetra-O-benzyl glucoside (1) and 1-phenylselenyl-2,3,4,6-tetra-O-benzyl galactoside (2). Catalysis is effected with both metal (Ru(bpy)3) and organocatalysts (diphenyldiselenide). Reactions afford, in all cases, primarily the α-anomers with selectivities that vary with solvent. This represents the first example of a visible light-promoted O-glycosylation.


Bioorganic & Medicinal Chemistry | 2013

Ascaroside activity in Caenorhabditis elegans is highly dependent on chemical structure.

Kyle A. Hollister; Elizabeth S. Conner; Xinxing Zhang; Mark Spell; Gary M. Bernard; Pratik Patel; Ana Carolina G.V. de Carvalho; Rebecca A. Butcher; Justin R. Ragains

The nematode Caenorhabditis elegans secretes ascarosides, structurally diverse derivatives of the 3,6-dideoxysugar ascarylose, and uses them in chemical communication. At high population densities, specific ascarosides, which are together known as the dauer pheromone, trigger entry into the stress-resistant dauer larval stage. In order to study the structure-activity relationships for the ascarosides, we synthesized a panel of ascarosides and tested them for dauer-inducing activity. This panel includes a number of natural ascarosides that were detected in crude pheromone extract, but as yet have no assigned function, as well as many unnatural ascaroside derivatives. Most of these ascarosides, some of which have significant structural similarity to the natural dauer pheromone components, have very little dauer-inducing activity. Our results provide a primer to ascaroside structure-activity relationships and suggest that slight modifications to ascaroside structure dramatically influence binding to the relevant G protein-coupled receptors that control dauer formation.


Journal of the American Chemical Society | 2014

Application of visible light photocatalysis with particle lithography to generate polynitrophenylene nanostructures.

Susan D. Verberne-Sutton; Rashanique D. Quarels; Xianglin Zhai; Jayne C. Garno; Justin R. Ragains

Visible light photoredox catalysis was combined with immersion particle lithography to prepare polynitrophenylene organic films on Au(111) surfaces, forming a periodic arrangement of nanopores. Surfaces masked with mesospheres were immersed in solutions of p-nitrobenzenediazonium tetrafluoroborate and irradiated with blue LEDs in the presence of the photoredox catalyst Ru(bpy)3(PF6)2 to produce p-nitrophenyl radicals that graft onto gold substrates. Surface masks of silica mesospheres were used to protect small, discrete regions of the Au(111) surface from grafting. Nanopores were formed where the silica mesospheres touched the surface; the mask effectively protected nanoscopic local areas from the photocatalysis grafting reaction. Further reaction of the grafted arenes with aryl radicals resulted in polymerization to form polynitrophenylene structures with thicknesses that were dependent on both the initial concentration of diazonium salt and the duration of irradiation. Photoredox catalysis with visible light provides mild, user-friendly conditions for the reproducible generation of multilayers with thicknesses ranging from 2 to 100 nm. Images acquired with atomic force microscopy (AFM) disclose the film morphology and periodicity of the polymer nanostructures. The exposed sites of the nanopores provide a baseline to enable local measurements of film thickness with AFM. The resulting films of polynitrophenylene punctuated with nanopores provide a robust foundation for further chemical steps. Spatially selective binding of mercaptoundecanoic acid to exposed sites of Au(111) was demonstrated, producing a periodic arrangement of thiol-based nanopatterns within a matrix of polynitrophenylene.

Collaboration


Dive into the Justin R. Ragains's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Spell

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristina Deveaux

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Kyle A. Hollister

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayne C. Garno

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Shaofu Du

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge