Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justin Shobe is active.

Publication


Featured researches published by Justin Shobe.


Nature | 2016

A shared neural ensemble links distinct contextual memories encoded close in time

Denise J. Cai; Daniel Aharoni; Tristan Shuman; Justin Shobe; Jeremy S. Biane; Weilin Song; Brandon Wei; Michael Veshkini; Mimi La-Vu; Jerry Lou; Sergio E. Flores; Isaac I. Kim; Yoshitake Sano; Miou Zhou; Karsten Baumgaertel; Ayal Lavi; Masakazu Kamata; Mark H. Tuszynski; Mark Mayford; Peyman Golshani; Alcino J. Silva

Recent studies suggest the hypothesis that a shared neural ensemble may link distinct memories encoded close in time1–13. According to the memory allocation hypothesis1,2, learning triggers a temporary increase in neuronal excitability14–16 that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Accordingly, we report that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Multiple convergent findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability16,17, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged animals, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by aging could affect the temporal structure of memories, thus impairing efficient recall of related information.


Science | 2009

Molecular and Cellular Approaches to Memory Allocation in Neural Circuits

Alcino J. Silva; Yu Zhou; Thomas Rogerson; Justin Shobe; J. Balaji

Although memory allocation is a subject of active research in computer science, little is known about how the brain allocates information within neural circuits. There is an extensive literature on how specific types of memory engage different parts of the brain, and how neurons in these regions process and store information. Until recently, however, the mechanisms that determine how specific cells and synapses within a neural circuit (and not their neighbors) are recruited during learning have received little attention. Recent findings suggest that memory allocation is not random, but rather specific mechanisms regulate where information is stored within a neural circuit. New methods that allow tagging, imaging, activation, and inactivation of neurons in behaving animals promise to revolutionize studies of brain circuits, including memory allocation. Results from these studies are likely to have a considerable impact on computer science, as well as on the understanding of memory and its disorders.


Nature Reviews Neuroscience | 2014

Synaptic tagging during memory allocation

Thomas Rogerson; Denise J. Cai; Adam Frank; Yoshitake Sano; Justin Shobe; Manuel F. López-Aranda; Alcino J. Silva

There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled.


The Journal of Neuroscience | 2004

Intermediate-Term Memory for Site-Specific Sensitization in Aplysia Is Maintained by Persistent Activation of Protein Kinase C

Michael A. Sutton; Martha W. Bagnall; Shiv K. Sharma; Justin Shobe; Thomas J. Carew

Recent studies of long-term synaptic plasticity and long-term memory have demonstrated that the same functional endpoint, such as long-term potentiation, can be induced through distinct signaling pathways engaged by different patterns of stimulation. A critical question raised by these studies is whether different induction pathways either converge onto a common molecular mechanism or engage different molecular cascades for the maintenance of long-term plasticity. We directly examined this issue in the context of memory for sensitization in the marine mollusk Aplysia. In this system, training with a single tail shock normally induces short-term memory (<30 min) for sensitization of tail-elicited siphon withdrawal, whereas repeated spaced shocks induce both intermediate-term memory (ITM) (>90 min) and long-term memory (>24 hr). We now show that a single tail shock can also induce ITM that is expressed selectively at the trained site (site-specific ITM). Although phenotypically similar to the form of ITM induced by repeated trials, the mechanisms by which site-specific ITM is induced and maintained are distinct. Unlike repeated-trial ITM, site-specific ITM requires neither protein synthesis nor PKA activity for induction or maintenance. Rather, the induction of site-specific ITM requires calpain-dependent proteolysis of activated PKC, yielding a persistently active PKC catalytic fragment (PKM) that also serves to maintain the memory in the intermediateterm temporal domain. Thus, two unique forms of ITM that have different induction requirements also use distinct molecular mechanisms for their maintenance.


Current Opinion in Neurobiology | 2006

Intermediate-term processes in memory formation

Shara Stough; Justin Shobe; Thomas J. Carew

Neuroscientists have invested considerable effort in attempting to elucidate the molecular mechanisms that mediate short-term and long-term forms of learning and memory. For instance, the discovery of long-term potentiation inspired a field that has produced hundreds of studies examining both early and late forms of long-term potentiation. And at the behavioral level, most neuroscientists investigate either short- or long-term forms of memory or some combination of the two. The general belief that plasticity was restricted to short- and long-term temporal domains lasted for many years because of the apparent continuity of memory and its molecular characterization from one domain to the other. In cellular studies of plasticity, the short-term stage typically lasts in the range of minutes, and requires modification of pre-existing proteins, whereas long-term changes, such as synaptic growth, last for hours to days and require transcription and translation. As both behavioral and cellular studies covered a wider range of temporal domains, from the initiation of brief memory to the expression of long-lasting memory, it was at least tacitly assumed that these studies also captured any intervening domains as well. However, between these two temporal extremes lies a unique form of intermediate-term synaptic plasticity and memory, which mechanistically is a blend of the early and late forms.


Journal of Neurophysiology | 2015

Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes

Justin Shobe; Leslie D. Claar; Sepideh Parhami; Konstantin I. Bakhurin; Sotiris C. Masmanidis

The coordinated activity of neural ensembles across multiple interconnected regions has been challenging to study in the mammalian brain with cellular resolution using conventional recording tools. For instance, neural systems regulating learned behaviors often encompass multiple distinct structures that span the brain. To address this challenge we developed a three-dimensional (3D) silicon microprobe capable of simultaneously measuring extracellular spike and local field potential activity from 1,024 electrodes. The microprobe geometry can be precisely configured during assembly to target virtually any combination of four spatially distinct neuroanatomical planes. Here we report on the operation of such a device built for high-throughput monitoring of neural signals in the orbitofrontal cortex and several nuclei in the basal ganglia. We perform analysis on systems-level dynamics and correlations during periods of conditioned behavioral responding and rest, demonstrating the technologys ability to reveal functional organization at multiple scales in parallel in the mouse brain.


Current Biology | 2014

CREB Regulates Memory Allocation in the Insular Cortex

Yoshitake Sano; Justin Shobe; Miou Zhou; Shan Huang; Tristan Shuman; Denise J. Cai; Peyman Golshani; Masakazu Kamata; Alcino J. Silva

The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cyclic-AMP-response-element-binding protein (CREB) are more likely to be recruited into encoding and storing fear memory. To determine whether specific mechanisms also regulate memory allocation in other brain regions and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (conditioned stimulus [CS]) with the experience of malaise (such as that induced by LiCl; unconditioned stimulus [US]). The insular cortex is required for CTA memory formation and retrieval. CTA learning activates a subpopulation of neurons in this structure, and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc fluorescence in situ hybridization (FISH), and designer receptors exclusively activated by designer drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory.


Neuron | 2009

Temporal Phases of Activity-Dependent Plasticity and Memory Are Mediated by Compartmentalized Routing of MAPK Signaling in Aplysia Sensory Neurons

Justin Shobe; Yali Zhao; Shara Stough; Xiaojing Ye; Vickie Hsuan; Kelsey C. Martin; Thomas J. Carew

An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Small G proteins exhibit pattern sensitivity in MAPK activation during the induction of memory and synaptic facilitation in Aplysia

Xiaojing Ye; Justin Shobe; Shiv K. Sharma; Andreea Marina; Thomas J. Carew

Memory formation is highly sensitive to specific patterns of training, but the cellular and molecular mechanisms underlying pattern sensitivity are not well understood. We explored this general question by using Aplysia californica as a model system. We examined the regulation of MAPK (ERK1/2) activation by small G proteins in the CNS by using different patterns of analog stimuli that mimic different patterns of behavioral training for memory induction. We first cloned and characterized the Aplysia homologs of the small G proteins, Ras and Rap1 (ApRas and ApRap, respectively). We next examined changes in ApRas and ApRap activity that accompany MAPK activation. Last, by delivering recombinant ApRas and ApRap into the CNS, we directly manipulated their activity and examined the resultant MAPK activation. We found that MAPK activation induced by analog training depends on the combined activity of ApRas and ApRap, rather than the individual activity of either one alone. Also, ApRas and ApRap have a complex role in MAPK activation: they can act as activators or inhibitors, depending on the specific pattern of the training. The pattern-sensitive regulation of MAPK by interactive ApRas and ApRap activity that we have identified could contribute to the molecular routing of different downstream effects of spatially localized MAPK required for the induction of specific pattern-sensitive forms of synaptic facilitation and memory.


Frontiers in Behavioral Neuroscience | 2016

Retrieval and Reconsolidation Accounts of Fear Extinction.

Ravikumar Ponnusamy; Irina Zhuravka; Andrew M. Poulos; Justin Shobe; Michael Merjanian; Jeannie Huang; David Wolvek; Pia-Kelsey O’Neill; Michael S. Fanselow

Extinction is the primary mode for the treatment of anxiety disorders. However, extinction memories are prone to relapse. For example, fear is likely to return when a prolonged time period intervenes between extinction and a subsequent encounter with the fear-provoking stimulus (spontaneous recovery). Therefore there is considerable interest in the development of procedures that strengthen extinction and to prevent such recovery of fear. We contrasted two procedures in rats that have been reported to cause such deepened extinction. One where extinction begins before the initial consolidation of fear memory begins (immediate extinction) and another where extinction begins after a brief exposure to the consolidated fear stimulus. The latter is thought to open a period of memory vulnerability similar to that which occurs during initial consolidation (reconsolidation update). We also included a standard extinction treatment and a control procedure that reversed the brief exposure and extinction phases. Spontaneous recovery was only found with the standard extinction treatment. In a separate experiment we tested fear shortly after extinction (i.e., within 6 h). All extinction procedures, except reconsolidation update reduced fear at this short-term test. The findings suggest that strengthened extinction can result from alteration in both retrieval and consolidation processes.

Collaboration


Dive into the Justin Shobe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denise J. Cai

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshitake Sano

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miou Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge