Justin Y. Kwan
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justin Y. Kwan.
Cell | 2008
Hiroshi Tsuda; Sung Min Han; Youfeng Yang; Chao Tong; Yong Qi Lin; Kriti Mohan; Claire Haueter; Anthony Zoghbi; Yadollah Harati; Justin Y. Kwan; Michael A. Miller; Hugo J. Bellen
VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
PLOS Genetics | 2011
Tyler Mark Pierson; David Adams; Florian Bonn; Paola Martinelli; Praveen F. Cherukuri; Jamie K. Teer; Nancy F. Hansen; Pedro Cruz; Robert W. Blakesley; Gretchen Golas; Justin Y. Kwan; Anthony D. Sandler; Karin Fuentes Fajardo; Thomas C. Markello; Cynthia J. Tifft; Craig Blackstone; Elena I. Rugarli; Thomas Langer; William A. Gahl; Camilo Toro
We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.
PLOS ONE | 2012
Justin Y. Kwan; Suh Young Jeong; Peter van Gelderen; Han Xiang Deng; Martha Quezado; Laura E. Danielian; Lingye Chen; Elham Bayat; James R Russell; Teepu Siddique; Jeff H. Duyn; Tracey A. Rouault; Mary Kay Floeter
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T2 *-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.
Brain | 2011
Nobue K. Iwata; Justin Y. Kwan; Laura E. Danielian; Fernanda Tovar-Moll; Elham Bayat; Mary Kay Floeter
Primary lateral sclerosis is a sporadic disorder characterized by slowly progressive corticospinal dysfunction. Primary lateral sclerosis differs from amyotrophic lateral sclerosis by its lack of lower motor neuron signs and long survival. Few pathological studies have been carried out on patients with primary lateral sclerosis, and the relationship between primary lateral sclerosis and amyotrophic lateral sclerosis remains uncertain. To detect in vivo structural differences between the two disorders, diffusion tensor imaging of white matter tracts was carried out in 19 patients with primary lateral sclerosis, 18 patients with amyotrophic lateral sclerosis and 19 age-matched controls. Fibre tracking was used to reconstruct the intracranial portion of the corticospinal tract and three regions of the corpus callosum: the genu, splenium and callosal fibres connecting the motor cortices. Both patient groups had reduced fractional anisotropy, a measure associated with axonal organization, and increased mean diffusivity of the reconstructed corticospinal and callosal motor fibres compared with controls, without changes in the genu or splenium. Voxelwise comparison of the whole brain white matter using tract-based spatial statistics confirmed the differences between patients and controls in the diffusion properties of the corticospinal tracts and motor fibres of the callosum. This analysis further revealed differences in the regional distribution of white matter alterations between the patient groups. In patients with amyotrophic lateral sclerosis, the greatest reduction in fractional anisotropy occurred in the distal portions of the intracranial corticospinal tract, consistent with a distal axonal degeneration. In patients with primary lateral sclerosis, the greatest loss of fractional anisotropy and mean diffusivity occurred in the subcortical white matter underlying the motor cortex, with reduced volume, suggesting tissue loss. Clinical measures of upper motor neuron dysfunction correlated with reductions in fractional anisotropy in the corticospinal tract in patients with amyotrophic lateral sclerosis and increased mean diffusivity and volume loss of the corticospinal tract in patients with primary lateral sclerosis. Changes in the diffusion properties of the motor fibres of the corpus callosum were strongly correlated with changes in corticospinal fibres in patients, but not in controls. These findings indicate that degeneration is not selective for corticospinal neurons, but affects callosal neurons within the motor cortex in motor neuron disorders.
NeuroImage: Clinical | 2013
Justin Y. Kwan; Avner Meoded; Laura E. Danielian; Tianxia Wu; Mary Kay Floeter
Magnetic resonance imaging measures have been proposed as objective markers to study upper motor neuron loss in motor neuron disorders. Cross-sectional studies have identified imaging differences between groups of healthy controls and patients with amyotrophic lateral sclerosis (ALS) or primary lateral sclerosis (PLS) that correlate with disease severity, but it is not known whether imaging measures change as disease progresses. Additionally, whether imaging measures change in a similar fashion with disease progression in PLS and ALS is unclear. To address these questions, clinical and imaging evaluations were first carried out in a prospective cross-sectional study of 23 ALS and 22 PLS patients with similar motor impairment and 19 age-matched healthy controls. Clinical evaluations consisted of a neurological examination, the ALS Functional rating scale-revised, and measures of finger tapping, gait, and timed speech. Age and ALSFRS score were not different, but PLS patients had longer duration of symptoms. Imaging measures examined were cortical thickness, regional brain volumes, and diffusion tensor imaging of the corticospinal tract and callosum. Imaging measures that differed from controls in a cross-sectional vertex-wise analysis were used as regions of interest for longitudinal analysis, which was carried out in 9 of the ALS patients (interval 1.26 ± 0.72 years) and 12 PLS patients (interval 2.08 ± 0.93 years). In the cross-sectional study both groups had areas of cortical thinning, which was more extensive in motor regions in PLS patients. At follow-up, clinical measures declined more in ALS than PLS patients. Cortical thinning and grey matter volume loss of the precentral gyri progressed over the follow-up interval. Fractional anisotropy of the corticospinal tracts remained stable, but the cross-sectional area declined in ALS patients. Changes in clinical measures correlated with changes in precentral cortical thickness and grey matter volume. The rate of cortical thinning was greater in ALS patients with shorter disease durations, suggesting that thickness decreases in a non-linear fashion. Thus, cortical thickness changes are a potential imaging marker for disease progression in individual patients, but the magnitude of change likely depends on disease duration and progression rate. Differences between PLS and ALS patients in the magnitude of thinning in cross-sectional studies are likely to reflect longer disease duration. We conclude that there is an evolution of structural imaging changes with disease progression in motor neuron disorders. Some changes, such as diffusion properties of the corticospinal tract, occur early while cortical thinning and volume loss occur later.
Molecular Genetics and Metabolism | 2015
Thomas C. Markello; Dong Chen; Justin Y. Kwan; Iren Horkayne-Szakaly; Alan Morrison; Olga Simakova; Irina Maric; Jay N. Lozier; Andrew R. Cullinane; Tatjana Kilo; Lynn Meister; Kourosh Pakzad; William P. Bone; Sanjay Chainani; Elizabeth Lee; Amanda E. Links; Cornelius F. Boerkoel; Roxanne Fischer; Camilo Toro; James G. White; William A. Gahl; Meral Gunay-Aygun
Store-operated Ca(2+) entry is the major route of replenishment of intracellular Ca(2+) in animal cells in response to the depletion of Ca(2+) stores in the endoplasmic reticulum. It is primarily mediated by the Ca(2+)-selective release-activated Ca(2+) (CRAC) channel, which consists of the pore-forming subunits ORAI1-3 and the Ca(2+) sensors, STIM1 and STIM2. Recessive loss-of-function mutations in STIM1 or ORAI1 result in immune deficiency and nonprogressive myopathy. Heterozygous gain-of-function mutations in STIM1 cause non-syndromic myopathies as well as syndromic forms of miosis and myopathy with tubular aggregates and Stormorken syndrome; some of these syndromic forms are associated with thrombocytopenia. Increased concentration of Ca(2+) as a result of store-operated Ca(2+) entry is essential for platelet activation. The York Platelet syndrome (YPS) is characterized by thrombocytopenia, striking ultrastructural platelet abnormalities including giant electron-opaque organelles and massive, multilayered target bodies and deficiency of platelet Ca(2+) storage in delta granules. We present clinical and molecular findings in 7 YPS patients from 4 families, demonstrating that YPS patients have a chronic myopathy associated with rimmed vacuoles and heterozygous gain-of-function STIM1 mutations. These findings expand the phenotypic spectrum of STIM1-related human disorders and define the molecular basis of YPS.
Movement Disorders | 2012
Ping Hua; Weiguo Liu; Sheng-Han Kuo; Yanyan Zhao; Ling Chen; Ning Zhang; Chun Wang; Suwan Guo; Li Wang; Hong Xiao; Justin Y. Kwan; Tianxia Wu
Circadian rhythm disturbance has been implicated in depression, and polymorphisms of circadian genes Cry1, Cry2, and Tef are associated with depression. However, the relationship between these genes and depression symptoms in Parkinsons disease (PD) has not been established.
Dementia and geriatric cognitive disorders extra | 2013
Avner Meoded; Justin Y. Kwan; Tracy L. Peters; Edward D. Huey; Laura E. Danielian; Edythe Wiggs; Arthur Morrissette; Tianxia Wu; James W. Russell; Elham Bayat; Jordan Grafman; Mary Kay Floeter
Introduction: Executive dysfunction occurs in many patients with amyotrophic lateral sclerosis (ALS), but it has not been well studied in primary lateral sclerosis (PLS). The aims of this study were to (1) compare cognitive function in PLS to that in ALS patients, (2) explore the relationship between performance on specific cognitive tests and diffusion tensor imaging (DTI) metrics of white matter tracts and gray matter volumes, and (3) compare DTI metrics in patients with and without cognitive and behavioral changes. Methods: The Delis-Kaplan Executive Function System (D-KEFS), the Mattis Dementia Rating Scale (DRS-2), and other behavior and mood scales were administered to 25 ALS patients and 25 PLS patients. Seventeen of the PLS patients, 13 of the ALS patients, and 17 healthy controls underwent structural magnetic resonance imaging (MRI) and DTI. Atlas-based analysis using MRI Studio software was used to measure fractional anisotropy, and axial and radial diffusivity of selected white matter tracts. Voxel-based morphometry was used to assess gray matter volumes. The relationship between diffusion properties of selected association and commissural white matter and performance on executive function and memory tests was explored using a linear regression model. Results: More ALS than PLS patients had abnormal scores on the DRS-2. DRS-2 and D-KEFS scores were related to DTI metrics in several long association tracts and the callosum. Reduced gray matter volumes in motor and perirolandic areas were not associated with cognitive scores. Conclusion: The changes in diffusion metrics of white matter long association tracts suggest that the loss of integrity of the networks connecting fronto-temporal areas to parietal and occipital areas contributes to cognitive impairment.
Muscle & Nerve | 2009
Sheng-Han Kuo; Mithila Vullaganti; Joohi Jimenez-Shahed; Justin Y. Kwan
Camptocormia is an abnormal truncal flexion posture that occurs while walking or standing. It is usually caused by various hypokinetic movement disorders such as Parkinson disease and multiple system atrophy. Myopathy or motor neuron disease can also be infrequent causes of camptocormia. Paraspinous muscle biopsy usually reveals focal myositis, regardless of the etiology of camptocormia. We describe the first case of generalized inflammatory myopathy with prominent camptocormia and proximal muscle weakness. Muscle biopsy of the quadriceps confirmed the diagnosis of polymyositis, and the posture showed modest improvement in response to steroid treatment. Muscle Nerve, 2009
The Neurologist | 2011
Doris Hichi Kung; Erica A. Hubenthal; Justin Y. Kwan; Samuel A. Shelburne; J. C. Goodman
IntroductionConcurrent toxoplasmosis infection of the brain, spinal cord, and muscle has never been reported together in a patient antemortem. Toxoplasma gondii is the most common focal central nervous system opportunistic infection in the acquired immune deficiency syndrome (AIDS) population. Despite this fact, isolated toxoplasmosis infection in the spinal cord is rarely reported. In addition, toxoplasmic myositis is also rarely diagnosed and Toxoplasma cysts are seldom found on biopsy. We present a patient with AIDS and toxoplasmosis resistant to standard anti-Toxoplasma therapy. Case ReportA 34-year-old man with a history of untreated AIDS presented with symptoms of myelopathy. Pathologically proven toxoplasmosis of the spinal cord was diagnosed and no brain lesions were found. However, despite appropriate treatment and initiation of highly active antiretroviral therapy, the patient developed worsening symptoms, including myopathy and autonomic instability. Muscle biopsy revealed Toxoplasma cysts, and there was laboratory evidence of a restored immune system. ConclusionWe report the first case of toxoplasmosis presenting initially with myelitis in the absence of encephalitis that subsequently progressed to myositis despite antiparasitic treatment. We also discuss the possibility of immune reconstitution inflammatory syndrome as a cause of his deterioration.