Justina C. Calamia
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justina C. Calamia.
Drug Metabolism and Disposition | 2004
Weili Huang; Yvonne S. Lin; Donavon J. McConn; Justina C. Calamia; Rheem A. Totah; Nina Isoherranen; Mary Glodowski; Kenneth E. Thummel
CYP3A4 and CYP3A5 exhibit significant overlap in substrate specificity but can differ in product regioselectivity and formation activity. To further explore this issue, we compared the kinetics of product formation for eight different substrates, using heterologously expressed CYP3A4 and CYP3A5 and phenotyped human liver microsomes. Both enzymes displayed allosteric behavior toward six of the substrates. When it occurred, the “maximal” intrinsic clearance was used for quantitative comparisons. Based on this parameter, CYP3A5 was more active than CYP3A4 in catalyzing total midazolam hydroxylation (3-fold) and lidocaine demethylation (1.4-fold). CYP3A5 exhibited comparable metabolic activity as CYP3A4 (90-110%) toward dextromethorphan N-demethylation and carbamazepine epoxidation. CYP3A5-catalyzed erythromycin N-demethylation, total flunitrazepam hydroxylation, testosterone 6β-hydroxylation, and terfenadine alcohol formation occurred with an intrinsic clearance that was less than 65% that of CYP3A4. Using two sets of human liver microsomes with equivalent CYP3A4-specific content but markedly different CYP3A5 content (group 1, predominantly CYP3A4; group 2, CYP3A4 + CYP3A5), we assessed the contribution of CYP3A5 to product formation rates determined at low substrate concentrations (≤Km). Mean product formation rates for group 2 microsomes were 1.4- to 2.2-fold higher than those of group 1 (p < 0.05 for 5 of 8 substrates). After adjusting for CYP3A4 activity (itraconazole hydroxylation), mean product formation rates for group 2 microsomes were still significantly higher than those of group 1 (p < 0.05 for 3 substrates). We suggest that, under conditions when CYP3A5 content represents a significant fraction of the total hepatic CYP3A pool, the contribution of CYP3A5 to the clearance of some drugs may be an important source of interindividual variability.
Journal of Molecular Biology | 1992
Justina C. Calamia; Colin Manoil
Escherichia coli lac permease is a polytopic integral membrane protein with six translocated (periplasmic) domains. Individual N-terminal cytoplasmic regions and membrane-spanning segments adjacent to each of the periplasmic domains acted as export signals for an attached sensor protein (alkaline phosphatase). However, the export activity of one of the spanning segments was considerably lower than that of the others, and was limited by the presence of a positively charged residue (Arg302). These observations are compatible with models of membrane protein insertion in which hydrophilic domains are translocated independently. However, the results suggest that efficient translocation may sometimes require interaction between individual spanning segments.
Therapeutic Drug Monitoring | 2012
Songmao Zheng; Thomas R. Easterling; Jason G. Umans; Menachem Miodovnik; Justina C. Calamia; Kenneth E. Thummel; Danny D. Shen; Connie L. Davis; Mary F. Hebert
Background: Information on the pharmacokinetics of tacrolimus during pregnancy is limited to case reports despite the increasing number of pregnant women being prescribed tacrolimus for immunosuppression. Methods: Blood, plasma, and urine samples were collected over 1 steady-state dosing interval from women treated with oral tacrolimus during early to late pregnancy (n = 10) and postpartum (n = 5). Total and unbound tacrolimus as well as metabolite concentrations in blood and plasma were assayed by a validated liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) method. A mixed-effect linear model was used for comparison across gestational age and using postpartum as the reference group. Results: The mean oral clearance (CL/F) based on whole-blood tacrolimus concentration was 39% higher during mid-pregnancy and late pregnancy compared with postpartum (47.4 ± 12.6 vs. 34.2 ± 14.8 L/h, P < 0.03). Tacrolimus-free fraction increased by 91% in plasma (fP) and by 100% in blood (fB) during pregnancy (P = 0.0007 and 0.002, respectively). Increased fP was inversely associated with serum albumin concentration (r = −0.7, P = 0.003), which decreased by 27% during pregnancy. Pregnancy-related changes in fP and fB contributed significantly to the observed gestational increase in tacrolimus whole-blood CL/F (r2 = 0.36 and 0.47, respectively, P < 0.01). In addition, tacrolimus whole-blood CL/F was inversely correlated with both hematocrit and red blood cell counts, suggesting that binding of tacrolimus to erythrocytes restricts its availability for metabolism. Treating physicians increased tacrolimus dosages in study participants during pregnancy by an average of 45% to maintain tacrolimus whole-blood trough concentrations in the therapeutic range. This led to striking increases in unbound tacrolimus trough concentrations and unbound area under the concentration–time curve, by 112% and 173%, respectively, during pregnancy (P = 0.02 and 0.03, respectively). Conclusions: Tacrolimus pharmacokinetics are altered during pregnancy. Dose adjustment to maintain whole-blood tacrolimus concentration in the usual therapeutic range during pregnancy increases circulating free drug concentrations, which may impact clinical outcomes.
Clinical Pharmacology & Therapeutics | 2012
Songmao Zheng; Yasar Tasnif; Mary F. Hebert; Connie L. Davis; Yoshihisa Shitara; Justina C. Calamia; Yvonne S. Lin; Danny D. Shen; Kenneth E. Thummel
We evaluated the hypothesis that cytochrome P450 3A5 (CYP3A5) expression can affect intrarenal tacrolimus accumulation. Tacrolimus was administered orally to 24 healthy volunteers who were selected on the basis of their CYP3A5 genotype. As compared with CYP3A5 nonexpressors, expressors had a 1.6‐fold higher oral tacrolimus clearance and 2.0‐ to 2.7‐fold higher metabolite/parent area under the curve (AUC) ratios for 31‐desmethyl tacrolimus (31‐DMT), 12‐hydroxy tacrolimus, and 13‐desmethyl tacrolimus (13‐DMT). In addition, the apparent urinary tacrolimus clearance was 36% lower in CYP3A5 expressors as compared with nonexpressors. To explore the mechanism behind this observation, we developed a semiphysiological model of renal tacrolimus disposition and predicted that tacrolimus exposure in the renal epithelium of CYP3A5 expressors is 53% of that for CYP3A5 nonexpressors, when normalized to blood AUC. These data suggest that, at steady state, intrarenal accumulation of tacrolimus and its primary metabolites will depend on the CYP3A5 genotype of the liver and kidneys. This may contribute to interpatient differences in the risk of tacrolimus‐induced nephrotoxicity.
British Journal of Clinical Pharmacology | 2013
Songmao Zheng; Thomas R. Easterling; Karen Hays; Jason G. Umans; Menachem Miodovnik; Shannon Clark; Justina C. Calamia; Kenneth E. Thummel; Danny D. Shen; Connie L. Davis; Mary F. Hebert
AIM(S) The current investigation aims to provide new insights into fetal exposure to tacrolimus in utero by evaluating maternal and umbilical cord blood (venous and arterial), plasma and unbound concentrations at delivery. This study also presents a case report of tacrolimus excretion via breast milk. METHODS Maternal and umbilical cord (venous and arterial) samples were obtained at delivery from eight solid organ allograft recipients to measure tacrolimus and metabolite bound and unbound concentrations in blood and plasma. Tacrolimus pharmacokinetics in breast milk were assessed in one subject. RESULTS Mean (±SD) tacrolimus concentrations at the time of delivery in umbilical cord venous blood (6.6 ± 1.8 ng ml(-1)) were 71 ± 18% (range 45-99%) of maternal concentrations (9.0 ± 3.4 ng ml(-1)). The mean umbilical cord venous plasma (0.09 ± 0.04 ng ml(-1)) and unbound drug concentrations (0.003 ± 0.001 ng ml(-1)) were approximately one fifth of the respective maternal concentrations. Arterial umbilical cord blood concentrations of tacrolimus were 100 ± 12% of umbilical venous concentrations. In addition, infant exposure to tacrolimus through the breast milk was less than 0.3% of the mothers weight-adjusted dose. CONCLUSIONS Differences between maternal and umbilical cord tacrolimus concentrations may be explained in part by placental P-gp function, greater red blood cell partitioning and higher haematocrit levels in venous cord blood. The neonatal drug exposure to tacrolimus via breast milk is very low and likely does not represent a health risk to the breastfeeding infant.
Transplantation | 2013
Songmao Zheng; Yasar Tasnif; Mary F. Hebert; Connie L. Davis; Yoshihisa Shitara; Justina C. Calamia; Yvonne S. Lin; Danny D. Shen; Kenneth E. Thummel
Background Higher concentrations of AM19 and AM1c9, secondary metabolites of cyclosporine A (CsA), have been associated with nephrotoxicity in organ transplant patients. The risk of renal toxicity may depend on the accumulation of CsA and its metabolites in the renal tissue. We evaluated the hypothesis that CYP3A5 genotype, and inferred enzyme expression, affects systemic CsA metabolite exposure and intrarenal CsA accumulation. Methods An oral dose of CsA was administered to 24 healthy volunteers who were selected based on their CYP3A5 genotype. CsA and its six main metabolites in whole blood and urine were measured by liquid chromatography-mass spectometry. In vitro incubations of CsA, AM1, AM9, and AM1c with recombinant CYP3A4 and CYP3A5 were performed to evaluate the formation pathways of AM19 and AM1c9. Results The mean CsA oral clearance was similar between CYP3A5 expressors and nonexpressors. However, compared with CYP3A5 nonexpressors, the average blood area under the concentration–time curve (AUC) for AM19 and AM1c9 was 47.4% and 51.3% higher in CYP3A5 expressors (P=0.040 and 0.011, respectively), corresponding to 30% higher AUCmetabolite/AUCCsA ratios for AM19 and AM1c9 in CYP3A5 expressors. The mean apparent urinary CsA clearance based on a 48-hr collection was 20.4% lower in CYP3A5 expressors compared with CYP3A5 nonexpressors (4.2±1.0 and 5.3±1.3 mL/min, respectively; P=0.037), which is suggestive of CYP3A5-dependent intrarenal CsA metabolism. Conclusions At steady state, intrarenal accumulation of CsA and its secondary metabolites should depend on the CYP3A5 genotype of the liver and kidneys. This may contribute to interpatient variability in the risk of CsA-induced nephrotoxicity.
Pharmacogenomics Journal | 2016
Y Shirasaka; A S Chaudhry; Matthew G. McDonald; Bhagwat Prasad; T Wong; Justina C. Calamia; Alison E. Fohner; Timothy A. Thornton; N Isoherranen; Jashvant D. Unadkat; Allan E. Rettie; Erin G. Schuetz; Kenneth E. Thummel
Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.The Pharmacogenomics Journal advance online publication, 1 September 2015; doi:10.1038/tpj.2015.58
Clinical Pharmacology & Therapeutics | 2003
Jeong M. Park; Yvonne S. Lin; Justina C. Calamia; Kenneth E. Thummel; John T. Slattery; Thomas F. Kalhorn; Robert L. Carithers; Adam E. Levy; Christopher L. Marsh; Mary F. Hebert
Background and objectives: Acetaminophen (INN, paracetamol) is metabolized to N‐acetyl‐p‐benzoquinone imine (NAPQI), a hepatotoxic metabolite, predominantly by cytochrome P450 (CYP) 2E1. Alterations in drug metabolism occur after organ transplantation. This study was designed to characterize acetaminophen disposition during the first 6 months after liver transplantation.
Drug Metabolism and Disposition | 2015
Robin E. Pearce; Roger Gaedigk; Justina C. Calamia; Diana L. Shuster; Kenneth E. Thummel; J. Steven Leeder
Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1ʹ-OH midazolam (MDZ) varied 79-fold, and the ratio of 1ʹ-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1ʹ-OH MDZ (r2 = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.
Drug Metabolism and Disposition | 2018
Timothy C. Wong; Zhican Wang; Brian D. Chapron; Mizuki Suzuki; Katrina G. Claw; Chunying Gao; Robert S. Foti; Bhagwat Prasad; Alenka Chapron; Justina C. Calamia; Amarjit S. Chaudhry; Erin G. Schuetz; Ronald L. Horst; Qingcheng Mao; Ian H. de Boer; Timothy A. Thornton; Kenneth E. Thummel
Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in regulating the biologic effects of vitamin D in the body. Although cytochrome P450–dependent hydroxylation of 25OHD3 has been extensively investigated, limited information is available on the conjugation of 25OHD3. In this study, we report that 25OHD3 is selectively conjugated to 25OHD3-3-O-sulfate by human sulfotransferase 2A1 (SULT2A1) and that the liver is a primary site of metabolite formation. At a low (50 nM) concentration of 25OHD3, 25OHD3-3-O-sulfate was the most abundant metabolite, with an intrinsic clearance approximately 8-fold higher than the next most efficient metabolic route. In addition, 25OHD3 sulfonation was not inducible by the potent human pregnane X receptor agonist, rifampicin. The 25OHD3 sulfonation rates in a bank of 258 different human liver cytosols were highly variable but correlated with the rates of dehydroepiandrosterone sulfonation. Further analysis revealed a significant association between a common single nucleotide variant within intron 1 of SULT2A1 (rs296361; minor allele frequency = 15% in whites) and liver cytosolic SULT2A1 content as well as 25OHD3-3-O-sulfate formation rate, suggesting that variation in the SULT2A1 gene contributes importantly to interindividual differences in vitamin D homeostasis. Finally, 25OHD3-3-O-sulfate exhibited high affinity for the vitamin D binding protein and was detectable in human plasma and bile but not in urine samples. Thus, circulating concentrations of 25OHD3-3-O-sulfate appear to be protected from rapid renal elimination, raising the possibility that the sulfate metabolite may serve as a reservoir of 25OHD3 in vivo, and contribute indirectly to the biologic effects of vitamin D.