Justine Renaud
Université du Québec
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justine Renaud.
Oxidative Medicine and Cellular Longevity | 2012
Julie Bournival; Marilyn Plouffe; Justine Renaud; Cindy Provencher; Maria-Grazia Martinoli
A growing body of evidence indicates that the majority of Parkinsons disease (PD) cases are associated with microglia activation with resultant elevation of various inflammatory mediators and neuroinflammation. In this study, we investigated the effects of 2 natural molecules, quercetin and sesamin, on neuroinflammation induced by the Parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) in a glial-neuronal system. We first established that quercetin and sesamin defend microglial cells against MPP+-induced increases in the mRNA or protein levels of 3 pro-inflammatory cytokines (interleukin-6, IL-1β and tumor necrosis factor-alpha), as revealed by real time-quantitative polymerase chain reaction and enzyme-linked immunoabsorbent assay, respectively. Quercetin and sesamin also decrease MPP+-induced oxidative stress in microglial cells by reducing inducible nitric oxide synthase protein expression as well as mitochondrial superoxide radicals. We then measured neuronal cell death and apoptosis after MPP+ activation of microglia, in a microglial (N9)-neuronal (PC12) coculture system. Our results revealed that quercetin and sesamin rescued neuronal PC12 cells from apoptotic death induced by MPP+ activation of microglial cells. Altogether, our data demonstrate that the phytoestrogen quercetin and the lignan sesamin diminish MPP+-evoked microglial activation and suggest that both these molecules may be regarded as potent, natural, anti-inflammatory compounds.
Rejuvenation Research | 2012
Julie Bournival; Marc-André Francoeur; Justine Renaud; Maria-Grazia Martinoli
Complications of diabetes are now well-known to affect sensory, motor, and autonomic nerves. Diabetes is also thought to be involved in neurodegenerative processes characteristic of several neurodegenerative diseases. Indeed, it has been acknowledged recently that hyperglycemia-induced oxidative stress contributes to numerous cellular reactions typical of central nervous system deterioration. The goal of the present study was to evaluate the effects of the polyphenol quercetin and the lignan sesamin on high-glucose (HG)-induced oxidative damage in an in vitro model of dopaminergic neurons, neuronal PC12 cells. When incubated with HG (13.5 mg/mL), neuronal PC12 cells showed a significant increase of cellular death. Our results revealed that quercetin and sesamin defend neuronal PC12 cells from HG-induced cellular demise. An elevated level of reactive oxygen and nitrogen species is a consequence of improved oxidative stress after HG administration, and we demonstrated that this production diminishes with quercetin and sesamin treatment. We also found that quercetin and sesamin elicited an increment of superoxide dismutase activity. DNA fragmentation, Bax/Bcl-2 ratio, nuclear translocation of apoptosis-inducing factor, as well as poly(adenosine diphosphate [ADP]-ribose) polymerase cleavage were significantly reduced by quercetin and sesamin administration, affirming their antiapoptotic features. Also, HG treatment impacted caspase-3 cleavage, supporting caspase-3-dependent pathways as mechanisms of apoptotic death. Our results indicate a powerful role for these natural dietary compounds and emphasize preventive or complementary nutritional strategies for diabetes control.
Progress in Neurobiology | 2017
Dora Reglodi; Justine Renaud; Andrea Tamas; Yousef Tizabi; Sergio B. Socías; Elaine Del-Bel; Rita Raisman-Vozari
Parkinsons disease is a progressive neurodegenerative disorder characterized by the degeneration of midbrain nigral dopaminergic neurons. Although its etiology remains unknown, the pathological role of several factors has been highlighted, namely oxidative stress, neuroinflammation, protein misfolding, and mitochondrial dysfunction, in addition to genetic predispositions. The current therapy is mainly symptomatic with l-DOPA aiming to replace dopamine. Novel therapeutic approaches are being investigated with the intention of influencing pathways leading to neuronal death and dysfunction. The present review summarizes three novel approaches, the use of which is promising in pre-clinical studies. Polyphenols have been shown to possess neuroprotective properties on account of their well-established antioxidative and anti-inflammatory actions but also due to their influence on protein misfolding and mitochondrial homeostasis. Within the amazing ancillary effects of antibiotics, their neuroprotective properties against neurodegenerative and neuroinflammatory processes are of great interest for the development of effective therapies against Parkinsons disease. Experimental evidence supports the potential of antibiotics as neuroprotective agents, being useful not only to prevent the formation of toxic α-synuclein oligomers but also to ameliorate mitochondrial dysfunction and neuroinflammation. Neuropeptides offer another approach with their diverse effects in the nervous system. Among them, pituitary adenylate cyclase-activating polypeptide, a member of the secretin/glucagon superfamily, has several advantageous effects in models of neurodegeneration, namely anti-apoptotic, anti-inflammatory and antioxidant actions, the combination of which offers a potent protective effect in dopaminergic neurons. Owing to their pleiotropic modes of action, these novel therapeutic candidates have potential in tackling the multidimensional features of Parkinsons disease.
Neurotoxicity Research | 2014
Justine Renaud; Julie Bournival; Ximena Zottig; Maria-Grazia Martinoli
Resveratrol (RESV), a polyphenolic natural compound, has long been acknowledged to have cardioprotective and antiinflammatory actions. Evidence suggests that RESV has antioxidant properties that reduce the formation of reactive oxygen species leading to oxidative stress and apoptotic death of dopaminergic (DAergic) neurons in Parkinson’s disease (PD). Recent literature has recognized hyperglycemia as a cause of oxidative stress reported to be harmful for the nervous system. In this context, our study aimed (a) to evaluate the effect of RESV against high glucose (HG)-induced oxidative stress in DAergic neurons, (b) to study the antiapoptotic properties of RESV in HG condition, and c) to analyze RESV’s ability to modulate p53 and GRP75, a p53 inactivator found to be under expressed in postmortem PD brains. Our results suggest that RESV protects DAergic neurons against HG-induced oxidative stress by diminishing cellular levels of superoxide anion. Moreover, RESV significantly reduces HG-induced apoptosis in DAergic cells by modulating DNA fragmentation and the expression of several genes implicated in the apoptotic cascade, such as Bax, Bcl-2, cleaved caspase-3, and cleaved PARP-1. RESV also prevents the pro-apoptotic increase of p53 in the nucleus induced by HG. Such data strengthens the correlation between hyperglycemia and neurodegeneration, while providing new insight on the high occurrence of PD in patients with diabetes. This study enlightens potent neuroprotective roles for RESV that should be considered as a nutritional recommendation for preventive and/or complementary therapies in controlling neurodegenerative complications in diabetes.
Current Pharmaceutical Biotechnology | 2014
Justine Renaud; Maria-Grazia Martinoli
Under normal conditions, most of the central nervous system (CNS) is protected by the blood brain barrier (BBB) from systemic inflammation progression and from the infiltration of immune cells. As a consequence, the CNS developed an original way to provide surveillance, defense and repair, which relies on the complex process of neuroinflammation. Despite tight regulation, neuroinflammation is frequently the cause of irreversible nerve cell loss but it is also where the solution lies. Specific immune crosstalk taking place in the CNS needs to be decoded in order to identify the best therapeutic strategies aimed at helping the CNS restore homeostasis in difficult conditions such as in neurodegenerative disorders. This review deals with the double-edged sword nature of neuroinflammation and the use of resveratrol in various models as one of the most promising therapeutic molecules for preventing the consequences of nerve cell autodestruction.
International Journal of Molecular Sciences | 2016
Imène Achour; Anne-Marie Arel-Dubeau; Justine Renaud; Manon Legrand; Everaldo Attard; Marc Germain; Maria-Grazia Martinoli
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.
M S-medecine Sciences | 2015
Justine Renaud; Hélène-Marie Thérien; Marilyn Plouffe; Maria-Grazia Martinoli
Sheltered in a bony cage, populated by cells with little regenerative potential, the central nervous system (CNS) could likely not withstand classic inflammation without risking major sequelae. As a consequence, it had to develop an original way to provide surveillance, defence and reparation, which relies on both the complex architecture of the periphery-nervous parenchyma exchange zones, and the tightly regulated collaboration between all the cell populations that reside in or pass through the CNS. Despite its tight regulation, neuroinflammation is sometimes the cause of irreversible loss but it is also where the solution stands. The specific immune crosstalk that takes place in the CNS needs to be decoded in order to identify the best therapeutic strategies aimed at helping the CNS to restore homeostasis in problematic situations, such as in the case of neurodegenerative disorders. This review deals with this double-edged sword nature of neuroinflammation.
Journal of Visualized Experiments | 2016
Justine Renaud; Maria-Grazia Martinoli
The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.
Neurotoxicity Research | 2014
Justine Renaud; Keith Chiasson; Julie Bournival; Claude Rouillard; Maria-Grazia Martinoli
Archive | 2017
Justine Renaud; Maria-Grazia Martinoli