Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justine Rudner is active.

Publication


Featured researches published by Justine Rudner.


Oncogene | 2000

Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis

C. Belka; Justine Rudner; Sebastian Wesselborg; A Stepczynska; P Marini; A. Lepple-Wienhues; H Faltin; Michael Bamberg; Wilfried Budach; Klaus Schulze-Osthoff

Activation of the CD95 death receptor as well as ionizing radiation induces apoptotic cell death in human lymphoma cells. The activation of caspases is a hallmark of apoptosis induction irrespective of the apoptotic trigger. In contrast to death receptor signaling, the exact mechanisms of radiation-induced caspase activation are not well understood. We provide evidence that both, radiation and CD95 stimulation, induce the rapid activation of caspase-8 and BID followed by apoptosis in Jurkat T-cells. To analyse the relative position of caspase-8 within the apoptotic cascade we studied caspase activation and apoptosis in Jurkat cells overexpressing Bcl-2 or Bcl-xL. Caspase-8 activation, pro-apoptotic BID cleavage and apoptosis in response to radiation were abrogated in these cells, while the responses to CD95 stimulation were only partially attenuated by overexpression of Bcl-2 family members. In parallel, the breakdown of the mitochondrial transmembrane potential (ΔΨm) in response to radiation was inhibited by overexpression of Bcl-2/Bcl-xL Jurkat cells genetically deficient for caspase-8 were found to be completely resistant towards CD95. However, radiation-induced apoptotic responses in caspase-8-negative cells displayed only a modest reduction. We conclude that ionizing radiation activates caspase-8 and BID downstream of mitochondrial damage suggesting that, in contrast to CD95, both events function as executioners rather than initiators of the apoptotic process.


Oncogene | 2001

Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL

C. Belka; B Schmid; P Marini; E Durand; Justine Rudner; H Faltin; Michael Bamberg; Klaus Schulze-Osthoff; Wilfried Budach

A combination of antitumor approaches acting on different death pathways seems ideal for increasing therapeutic responses, especially when defined resistance mechanisms interfere with individual cellular processes. Apoptosis pathways triggered by ionizing radiation (XRT) and the death ligand TRAIL were analysed in Jurkat lymphoma cells. Both induced the activation of caspase-8, caspase-3, BID and mitochondrial potential loss. TRAIL induced apoptosis required caspase-8, whereas it was not essential for radiation induced apoptosis. The inhibition of mitochondrial damage by Bcl-2 abrogated XRT induced apoptosis and caspase activation, but only marginally attenuated TRAIL induced cell death. The combined treatment with TRAIL and XRT exerted additive apoptotic effects in control cells, whereas highly synergistic effects occurred in cells overexpressing Bcl-2. In addition, a strong effect of TRAIL on radiation induced clonogenic cell death was found. In conclusion, TRAIL seems to be of high potential value for a combination with ionizing radiation in tumor therapy.


Oncogene | 2005

Type I and type II reactions in TRAIL-induced apoptosis – results from dose–response studies

Justine Rudner; Verena Jendrossek; Kirsten Lauber; Peter T. Daniel; Sebastian Wesselborg; Claus Belka

Death receptor-induced apoptosis is paradigmatically mediated via the recruitment of FADD adapter molecule to the ligand/receptor complex and subsequent activation of caspase-8. However, several observations provided evidence that components of the mitochondrial apoptosis pathway are involved in death receptor-mediated apoptosis. In this regard, caspase-8-mediated activation of Bid induces the release of cytochrome c from the mitochondria, which, in turn, triggers the formation of the apoptosome protein complex, resulting in the activation of caspase-9. Whereas Bax or Bak were shown to be required for the proapoptotic effect of Bid, Bcl-2 was described to interfere with its action. Up to now, contradictory results regarding the role of Bcl-2 in TRAIL-induced apoptosis have been published. In order to study the influence of Bcl-2 on TRAIL-induced cell death more detailed, we utilized a tetracycline-regulated Bcl-2 expression system in Jurkat T cells. After having analysed the dose response for TRAIL-induced activation of caspase-8, -9, -3, breakdown of the mitochondrial membrane potential, and changes in the apoptotic morphology in cells expressing different Bcl-2 levels, we conclude that overexpression of Bcl-2 mediates a partial resistance towards lower doses of TRAIL that can be overcome when higher doses of TRAIL are applied. Thus, the requirement of the mitochondrial pathway for death receptor-induced apoptosis in type II cells should be reconsidered, since the protective effect of Bcl-2 is limited to lower TRAIL doses or early observation time points.


Apoptosis | 2002

New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum.

Justine Rudner; Verena Jendrossek; C. Belka

The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed.


Radiotherapy and Oncology | 2011

Ionizing radiation induces migration of glioblastoma cells by activating BK K+ channels

Marc Steinle; Daniela Palme; Milan Misovic; Justine Rudner; Klaus Dittmann; Robert Lukowski; Peter Ruth; Stephan M. Huber

BACKGROUND AND PURPOSE Glioblastoma cells express high levels of Ca(2+)-activated BK K(+) channels which have been proposed to be indispensable for glioblastoma proliferation and migration. Since migration of glioblastoma cells is reportedly stimulated by ionizing radiation (IR), we tested for an IR-induced increase in BK channel activity and its effect on cell migration. MATERIALS AND METHODS T98G and U87MG cells were X-ray-irradiated with 0-2 Gy, BK channel activity was assessed by patch-clamp recording, migration by trans-well migration assay, and activation of the Ca(2+)/calmodulin-dependent kinase II (CaMKII) by immunoblotting. RESULTS IR dose-dependently stimulated migration of glioblastoma cells which was sensitive to the BK channel inhibitor paxilline. Ca(2+)-permeabilization of T98G cells activated up to 350 BK channels per cells. Importantly, IR stimulated an increase in BK channel open probability but did not modify the total number of channels. Moreover, IR activated CaMKII in a paxilline-sensitive manner. Finally, inhibition of CaMKII by KN-93 abolished the IR-stimulated migration. CONCLUSIONS We conclude that IR stimulates BK channel activity which results in activation of CaMKII leading to enhanced glioblastoma cell migration.


Radiation Oncology | 2010

The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation

Justine Rudner; Carola-Ellen Ruiner; René Handrick; Hansjörg Eibl; Claus Belka; Verena Jendrossek

Background and PurposeThe phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined.Materials and methodsProstate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM), LY294002 (25-100 µM), irradiated (0-10 Gy), or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis.ResultsThe Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy.ConclusionsOur data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines - one which is sensitive to the Akt-inhibitor ErPC3 and one which is more sensitive to the PI3K-inhibitor LY294002. Our findings underline the importance for the definition of predictive biomarkers that allow the selection patients that may benefit from the treatment with a specific signal transduction modifier.


Experimental Hematology | 2010

Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells

Gabriele Zoppoli; Michele Cea; Debora Soncini; Floriana Fruscione; Justine Rudner; Eva Moran; Irene Caffa; Davide Bedognetti; Giulia Motta; Riccardo Ghio; Fabio Ferrando; Alberto Ballestrero; Silvio Parodi; Claus Belka; Franco Patrone; Santina Bruzzone; Alessio Nencioni

OBJECTIVE The nicotinamide phosphoribosyltransferase (Nampt) inhibitor APO866 depletes intracellular nicotinamide adenine dinucleotide (NAD(+)) and shows promising anticancer activity in preclinical studies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to plasma membrane receptors DR4 and DR5 and induces apoptosis via caspase-8 and -10. Here we have explored the interaction between APO866 and TRAIL in leukemia cell lines and in primary B-cell chronic lymphocytic leukemia cells. MATERIALS AND METHODS Cells were treated with APO866, TRAIL, or their combination. Viability and mitochondrial transmembrane potential (ΔΨ(m)) were determined by cell staining with propidium iodide and tetramethylrhodamine ethyl ester, respectively, and flow cytometry. Nampt and γ-tubulin levels, as well as caspase-3 cleavage were detected by immunoblotting. DR4 and DR5 expression were assessed by immunostaining and flow cytometry. Caspases were inhibited with zVAD-FMK and zDEVD-FMK; autophagy with 3-methyladenine, LY294002, and wortmannin. Intracellular NAD(+) and adenosine triphosphate (ATP) were measured by cycling assays and high-performance liquid chromatography (HPLC), respectively. RESULTS APO866 induced NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage in leukemia cells, thereby leading to autophagic cell death. TRAIL induced caspase-dependent apoptosis. TRAIL addition to APO866 synergistically increased its activity in leukemia cells by enhancing NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage. No DR5 upregulation at the cell surface in response to APO866 was observed. Remarkably, in healthy leukocytes APO866 and TRAIL were poorly active and failed to show any cooperation. CONCLUSIONS Activation of the extrinsic apoptotic cascade with TRAIL selectively amplifies the sequelae of Nampt inhibition in leukemia cells, and appears as a promising strategy to enhance APO866 activity in hematological malignancies.


Cellular Physiology and Biochemistry | 2010

Non-selective cation channel-mediated Ca2+-entry and activation of Ca2+/calmodulin-dependent kinase II contribute to G2/M cell cycle arrest and survival of irradiated leukemia cells.

Nicole Heise; Daniela Palme; Milan Misovic; Saisudha Koka; Justine Rudner; Florian Lang; Helmut R. Salih; Stephan M. Huber; Guido Henke

Genotoxic stress induces cell cycle arrest and DNA repair which may enable tumor cells to survive radiation therapy. Here, we defined the role of Ca2+ signaling in the cell cycle control and survival of chronic myeloid leukemia (CML) cells subjected to ionizing radiation (IR). To this end, K562 erythroid leukemia cells were irradiated (0-10 Gy). Tumor survival was analyzed by clonogenic survival assay and cell cycle progression via flow cytometry. Plasma membrane cation conductance was assessed by patch-clamp whole-cell recording and the cytosolic free Ca2+ concentration ([Ca2+]i) was measured by fura-2 Ca2+ imaging. Nuclear activity of Ca2+/calmodulin-dependent kinase II (CaMKII) was defined by Western blotting. In addition, the effect of IR (5 Gy) on the cation conductance of primary CML cells was determined. The results indicated that IR (10 Gy) induced a G2/M cell cycle arrest of K562 cells within 24 h post-irradiation (p.i.) and decreased the clonogenic survival to 0.5 % of that of the control cells. In K562 cells, G2/M cell cycle arrest was preceded by activation of TRPV5/6-like nonselective cation channels in the plasma membrane 1-5 h p.i., resulting in an elevated Ca2+ entry as evident from fura-2 Ca2+ imaging. Similarly, IR stimulated a Ca2+-permeable nonselective cation conductance in primary CML cells within 2-4 h p.i.. Ca2+ entry, into K562 cells was paralleled by an IR-induced activation of nuclear CaMKII. The IR-stimulated accumulation in G2 phase was delayed upon buffering [Ca2+]i with the Ca2+ chelator BAPTA-AM or inhibiting CaMKII with KN93 (1 nM). In addition, KN93 decreased the clonogenic survival of irradiated cells but not of control cells. In conclusion, the data suggest that IR-stimulated cation channel activation, Ca2+ entry and CaMKII activity participate in control of cell cycle progression and survival of irradiated CML cells.


Biochemical Pharmacology | 2010

Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on celecoxib-induced apoptosis.

Justine Rudner; Simon Johannes Elsaesser; Arndt-Christian Müller; Claus Belka; Verena Jendrossek

The cyclooxygenase-2 inhibitor Celecoxib is a potent inducer of apoptosis in tumor cells. In most cellular systems Celecoxib induces apoptosis via an intrinsic, mitochondrial apoptosis pathway. We recently showed that in Bax-negative Jurkat cells expression of pro-apoptotic Bak is essential for Celecoxib-induced mitochondrial damage and apoptosis induction. Aim of the present study was to identify specific pro- and anti-apoptotic members of the Bcl-2 family involved in the regulation of Bak activation, and subsequent apoptosis upon treatment with Celecoxib in the Jurkat cell model. Our results show that apoptosis in response to Celecoxib required the presence of Noxa and downregulation of the anti-apoptotic protein Mcl-1. Celecoxib-induced Bak activation and subsequent apoptosis could be inhibited by overexpression of Bcl-xL but not by the very similar Bcl-2. In Bcl-xL-overexpressing cells neutralization of both, Mcl-1 and Bcl-xL, was prerequisite for an efficient induction of apoptosis. Our data reveal an important role of the Mcl-1/Noxa axis for Celecoxib-induced apoptosis and suggest that Celecoxib may be of value for treatment of tumors addicted to Mcl-1 and for combined treatment approaches targeting anti-apoptotic Bcl-2 family members.


Oxidative Medicine and Cellular Longevity | 2016

Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner

Dominik Klumpp; Milan Misovic; Kalina Szteyn; Ekaterina Shumilina; Justine Rudner; Stephan M. Huber

Messenger RNA data of lymphohematopoietic cancer lines suggest a correlation between expression of the cation channel TRPM2 and the antiapoptotic protein Bcl-2. The latter is overexpressed in various tumor entities and mediates therapy resistance. Here, we analyzed the crosstalk between Bcl-2 and TRPM2 channels in T cell leukemia cells during oxidative stress as conferred by ionizing radiation (IR). To this end, the effects of TRPM2 inhibition or knock-down on plasma membrane currents, Ca2+ signaling, mitochondrial superoxide anion formation, and cell cycle progression were compared between irradiated (0–10 Gy) Bcl-2-overexpressing and empty vector-transfected Jurkat cells. As a result, IR stimulated a TRPM2-mediated Ca2+-entry, which was higher in Bcl-2-overexpressing than in control cells and which contributed to IR-induced G2/M cell cycle arrest. TRPM2 inhibition induced a release from G2/M arrest resulting in cell death. Collectively, this data suggests a pivotal function of TRPM2 in the DNA damage response of T cell leukemia cells. Apoptosis-resistant Bcl-2-overexpressing cells even can afford higher TRPM2 activity without risking a hazardous Ca2+-overload-induced mitochondrial superoxide anion formation.

Collaboration


Dive into the Justine Rudner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Belka

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Handrick

University of Applied Sciences Biberach

View shared research outputs
Top Co-Authors

Avatar

Wilfried Budach

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge