Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Justyn Ochocki is active.

Publication


Featured researches published by Justyn Ochocki.


RSC Advances | 2015

Properties and applications of flavonoid metal complexes

Maria Kasprzak; Andrea Erxleben; Justyn Ochocki

Flavonoids are widely occurring polyphenol compounds of plant origin with multiple biological and chemical activities. Due to the presence of carbonyl and hydroxyl groups they can coordinate metal ions and form complexes. Metal complexes of flavonoids have many interesting properties: they are colored, often fluorescent, anti- or pro-oxidant, antimicrobial, antiproliferative and biologically active in many other ways. There are many papers covering specific aspects of activity of flavonoid metal complexes, e.g. their antioxidant properties, enzyme-mimicking behavior, therapeutic potential or use in chemical analysis. However, for a researcher interested in this theme, it would be useful to find an extensive review on more than one selected area. Our aim was to cover a wide spectrum of possible activities and potential applications of flavonoids coordinated to metal ions in order to give our readers a broad view on the topic of this class of compounds, their activity and potential applications. While a significant amount of information on the chemical properties and biological activity of flavonoid metal complexes can be found in the literature, an in-depth understanding of structure–property relationships is still lacking. In an attempt to address this issue, a comprehensive discussion of the available data is presented.


European Journal of Inorganic Chemistry | 1998

Synthesis, Spectroscopy, and Magnetic Properties of Transition-Metal Complexes with the Diethyl 2-Quinolylmethylphosphonate (2-qmpe) Ligand − Crystal Structures of [Ni(2-qmpe)4(H2O)2](ClO4)2 and [Mn(2-qmpe)4(H2O)2](ClO4)2 Showing Unexpected O-Binding of the qmpe Ligands

Justyn Ochocki; Bogumila Zurowska; Jerzy Mrozinski; Huub Kooijman; Anthony L. Spek; Jan Reedijk

The synthesis and characterization of transition-metal coordination compounds containing the ligand diethyl 2-quinolylmethylphosphonate (2-qmpe) is described. Complexes of CoII, MnII, NiII, CdII, and ZnII were found to be mutually isomorphous according to their X-ray powder diffraction patterns and IR spectra. The new coordination compounds were identified and characterized by elemental analysis, magnetic measurements, infrared and ligand-field spectra. The crystal structures of the complexes [M(2-qmpe)4(H2O)2](ClO4)2 (M = Ni, 1; Mn, 2) reveal six-coordinate [M(2-qmpe)4(H2O)2] cations with the qmpe ligand coordinating via the oxygen rather than via the nitrogen atom, as well as lattice perchlorate anions. The metal ion is octahedrally surrounded by the four oxygen atoms of the four organic ligands. The non-participation of the pyridine nitrogen atom is unusual. The two water molecules occupy the fifth and the sixth coordination sites in a trans configuration. The coordinated water molecules are strongly hydrogen-bonded to the pyridine nitrogen atom of the 2-qmpe, further stabilizing the solid-state structure. The geometry of the metal ion can be described as distorted octahedral. For the CuII complex, a hydroxo-bridged dinuclear structure of the type [Cu(2-qmpe)2(OH)(H2O)2]2(ClO4)2 is proposed, based on its spectroscopic and magnetic properties. Ligand-field spectra of the Co and Ni compounds were found to be in agreement with the tetragonally distorted octahedral geometry.


Inorganica Chimica Acta | 2000

Methylphosphonate, hydroxymethylphosphonate and aminomethylphosphonate ligands containing pyridine, pyrazole or imidazole side chains: the coordination abilities towards Cu(II) ions

Longin Chruściński; Piotr Młynarz; Katarzyna Malinowska; Justyn Ochocki; Bogdan Boduszek; Henryk Kozlowski

Abstract Potentiometric and spectroscopic study on coordination abilities of phosphonic acid derivatives with pyridine, imidazole and pyrazole towards Cu(II) ions have shown that involvement of heterocyclic amines increases considerably the chelating power of phosphonates. The most effective ligand was found to be the imidazole amino-phosphonate derivative, which may compete with histidine the most effective natural amino acid chelator.


Organic and Biomolecular Chemistry | 2003

Synthesis and acid–base properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2−). Evidence for intramolecular hydrogen-bond formation in aqueous solution between (N-1)H and the phosphonate group

María José Sánchez-Moreno; Raquel B. Gómez-Coca; Alfonso Fernández-Botello; Justyn Ochocki; Andrzej Kotynski; Rolf Griesser; Helmut Sigel

The synthesis of (1H-benzimidazol-2-yl-methyl)phosphonic acid, H2(Bimp)+/-, is described: 2-chloromethylbenzimidazole was reacted with ethylchloroformate to give 1-carboethoxy-2-chloromethylbenzimidazole which was treated with trimethyl phosphite and after hydrolysis with aqueous HBr H2(Bimp)+/- was obtained. In H2(Bimp)+/- one proton is at the N-3 site and the other at the phosphonate group; both acidity constants were determined in aqueous solution by potentiometric pH titrations (25 degrees C; I = 0.1 M, NaNO3) and this furnished the pKa values of 5.37 +/- 0.02 and 7.41 +/- 0.02, respectively. The acidity constant for the release of the primary proton from the P(O)(OH)2 group of H3(Bimp)+ was estimated: pKa = 1.5 +/- 0.2. Moreover, Bimp2- can be further deprotonated at its neutral (N-1/N-3)H site to give the benzimidazolate residue, but this reaction occurs only in strongly alkaline solution (KOH); application of the H_ scale developed by G. Yagil (J. Phys. Chem., 1967, 71, 1034) together with UV spectrophotometric measurements gave pKa = 14.65 +/- 0.12. Comparisons with acidity constants taken from the literature show that this latter pKa value is far too large and this allows the conclusion that an intramolecular hydrogen bond is formed between the (N-1/N-3)H site and the phosphonate group of Bimp2-; the formation degree of this hydrogen-bonded isomer is estimated to be 98 +/- 2%. The general relevance of this and the other results are shortly discussed and the species distribution for the Bimp system in dependence on pH is provided.


ChemMedChem | 2014

Synthesis, Characterization, and Antimicrobial Activity of Silver(I) and Copper(II) Complexes of Phosphate Derivatives of Pyridine And Benzimidazole

Urszula Kalinowska-Lis; Eligia M. Szewczyk; Lilianna Chęcińska; Jakub Wojciechowski; Wojciech M. Wolf; Justyn Ochocki

Two silver(I) complexes—{[Ag(4‐pmOpe)]NO3}n and [Ag(2‐bimOpe)2]NO3—and three copper(II) complexes—[Cu4Cl6O(2‐bimOpe)4], [CuCl2(4‐pmOpe)2], and [CuCl2(2‐bis(pm)Ope]—were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin‐4‐ylmethyl)phosphate (4‐pmOpe), 1H‐benzimidazol‐2‐ylmethyl diethyl phosphate (2‐bimOpe), and ethyl bis(pyridin‐2‐ylmethyl)phosphate (2‐bis(pm)Ope). These compounds were characterized by 1H, 13C, and 31P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4‐pmOpe)]NO3}n and [Cu4Cl6O(2‐bimOpe)4] were determined by single‐crystal X‐ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2‐bimOpe)2]NO3 was particularly active against Pseudomonas aeruginosa and methicillin‐resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL−1.


Dalton Transactions | 2010

Synthesis, single-crystal and solution structure analysis and in vitro cytotoxic activity of two novel complexes of ruthenium(II) with in situ formed flavanone-based ligands.

Justyn Ochocki; Maria Kasprzak; Lilianna Chęcińska; Andrea Erxleben; Elzbieta Zyner; Leszek Szmigiero; Ariadna Garza-Ortiz; Jan Reedijk

Synthesis, structure and properties of two new flavanone complexes of Ru(ii) are described. The new complexes form during the reaction of ruthenium(iii) chloride with 3-aminoflavone (3-af) dissolved in an aliphatic alcohol. The formed products depend on the alcohol used and were found to be: cis-dichloridobis(3-imino-2-methoxyflavanone)ruthenium(ii)·3H(2)O (1) from a methanolic solution and cis-dichloridobis(3-imino-2-ethoxyflavanone)ruthenium(ii)·2H(2)O (2) from an ethanolic solution, in which the original ligand 3-af had been converted by dehydrogenative alcoholysis to an entirely new ligand. This paper presents the X-ray structure and detailed (1)H-NMR analysis of both new compounds, as well as the study of their antiproliferative activity. The coordination of Ru(ii) is octahedral with [RuCl(2)N(2)O(2)] chromophores, having trans chlorides and common Ru-L distances. Both 1 and 2 are highly cytotoxic towards the cisplatin resistant EJ and L1210 cell lines, and both complexes are as active as cisplatin in the sensitive cell lines. They display the ability to overcome cisplatin resistance in the drug resistant sub-lines EJcisR and L1210R. The present evidence suggests that the mechanism of biological activity may be different for these ruthenium compounds compared to cisplatin.


Investigational New Drugs | 2005

Enhanced P53 and BAX gene expression and apoptosis in A549 cells by cis-Pt(II) complex of 3-aminoflavone in comparison with cis-DDP.

Beata Kosmider; Izabela Wojcik; Regina Osiecka; Jacek Bartkowiak; Elzbieta Zyner; Justyn Ochocki; Pawel P. Liberski

Lung cancer remains one of the most common causes of cancer-related death worldwide. Approximately 80% is histologically non-small cell lung carcinoma (NSCLC) and in about 70% of patients it is an unresectable type. Clinical studies indicated that application of platinum derivatives caused good results and combinations of platinum with other agents could improve median survivals. In view of the central problem of sufficient efficiency of drugs in chemotherapy, efforts have focused on the development of alternative platinum-based analogues that can be more effective in cancer treatment. cis-bis(3-aminoflavone)dichloroplatinum(II) (cis-Pt(II) complex of 3-aminoflavone) represents a novel class of platinum-based potential antitumour agents. In order to evaluate the degree of apoptosis, acridine orange/ethidium bromide and Hoechst 33258/propidum iodide double staining as well as RT-PCR (P53 and BAX expression evaluation) were used in lung cancer cell line A549 after treatment with this compound in comparison with cis-diamminedichloroplatinum(II) (cis-DDP). Apoptotic cells at early and late stages and also necrotic ones were observed after usage of cis-Pt(II) complex of 3-aminoflavone and the percentage of these cells outnumbered the values obtained after cis-DDP application. The former compound induced a higher percentage of P53 and BAX expression in A549 cells in comparison with the latter one. Results indicate the beneficial properties of cis-Pt(II) complex of 3-aminoflavone as a potential antitumor drug.


Molecules | 2016

Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz)Imidazole Derivatives. X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3

Urszula Kalinowska-Lis; Aleksandra Felczak; Lilianna Chęcińska; Ilona Szabłowska-Gadomska; Emila Patyna; Maciej Małecki; Katarzyna Lisowska; Justyn Ochocki

Selected aspects of the biological activity of a series of six nitrate silver(I) complexes with pyridine and (benz)imidazole derivatives were investigated. The present study evaluated the antibacterial activities of the complexes against three Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922 and Proteus hauseri ATCC 13315. The results were compared with those of silver nitrate, a silver sulfadiazine drug and appropriate ligands. The most significant antibacterial properties were exerted by silver(I) complexes containing benzimidazole derivatives. The cytotoxic activity of the complexes was examined against B16 (murine melanoma) and 10T1/2 (murine fibroblasts) cells. All of the tested silver(I) compounds were not toxic to fibroblast cells in concentration inhibited cancer cell (B16) viability by 50%, which ranged between 2.44–28.65 µM. The molecular and crystal structure of silver(I) complex of 2,6-di(hydroxymethyl)pyridine was determined by single-crystal X-ray diffraction analysis. The most important features of the crystal packing and intermolecular non-covalent interactions in the Ag(I) complex were quantified via Hirshfeld surface analysis.


Journal of Inorganic Biochemistry | 2011

Proapoptotic activity in vitro of two novel ruthenium(II) complexes with flavanone-based ligands that overcome cisplatin resistance in human bladder carcinoma cells

Maria Kasprzak; Leszek Szmigiero; Elzbieta Zyner; Justyn Ochocki

In this study we examined their proapoptotic activity of cis-dichloridobis(3-imino-2-methoxyflavanone)ruthenium(II)3H(2)O (1) and cis-dichloridobis(3-imino-2-ethoxyflavanone)ruthenium(II)2H(2)O (2) towards human bladder carcinoma cell line EJ and its cisplatin resistant subline EJcisR. On the basis of the experiments we carried out, it may be concluded, that: CDDP (cis-diamminedichloridoplatinum) resistance of EJcisR cells is probably based on partial loss of apoptotic pathway activating caspase-8 and increased resistance to DNA strand breaks and/or alkali-labile sites. Increased glutathione levels, as well as activity of P-gp transporter seems to be not relevant in this case. The proapoptotic activity of the ruthenium compounds is higher than that of cisplatin. Higher proapoptotic activity of 1 and 2 when compared to CDDP may be due to the presence of large, lipophilic flavanone-based ligands that may facilitate their trans-membrane transport and their redox activity. 1 and 2 induce apoptosis apparently in more than one way. Although caspase-8 activation and DNA strand breaks and/or alkali-labile sites are caused by the compounds, their ability to cause the oxidative stress in the cells may also participate in apoptosis induction.


Chemistry: A European Journal | 2008

Comparison of the Surprising Metal-Ion-Binding Properties of 5-and 6-Uracilmethylphosphonate (5Umpa2-and 6Umpa2-) in Aqueous Solution and Crystal Structures of the Dimethyl and Di(isopropyl) Esters of H2(6Umpa)

Eva Freisinger; Rolf Griesser; Bernhard Lippert; Cristóbal F. Moreno-Luque; Justyn Ochocki; Bert P. Operschall; Helmut Sigel

5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)

Collaboration


Dive into the Justyn Ochocki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elzbieta Zyner

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar

Regina Osiecka

Nofer Institute of Occupational Medicine

View shared research outputs
Top Co-Authors

Avatar

Leszek Szmigiero

Medical University of Łódź

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Erxleben

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge