Justyna Iwaszkiewicz
Swiss Institute of Bioinformatics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Justyna Iwaszkiewicz.
Blood | 2016
David Vallois; Maria Pamela Dobay; Ryan D. Morin; François Lemonnier; Edoardo Missiaglia; Mélanie Juilland; Justyna Iwaszkiewicz; Virginie Fataccioli; Bettina Bisig; Annalisa Roberti; Jasleen Grewal; Julie Bruneau; Bettina Fabiani; Antoine Martin; Christophe Bonnet; Olivier Michielin; Jean-Philippe Jais; Martin Figeac; Olivier A. Bernard; Mauro Delorenzi; Corinne Haioun; Olivier Tournilhac; Margot Thome; Randy D. Gascoyne; Philippe Gaulard; Laurence de Leval
Angioimmunoblastic T-cell lymphoma (AITL) and other lymphomas derived from follicular T-helper cells (TFH) represent a large proportion of peripheral T-cell lymphomas (PTCLs) with poorly understood pathogenesis and unfavorable treatment results. We investigated a series of 85 patients with AITL (n = 72) or other TFH-derived PTCL (n = 13) by targeted deep sequencing of a gene panel enriched in T-cell receptor (TCR) signaling elements. RHOA mutations were identified in 51 of 85 cases (60%) consisting of the highly recurrent dominant negative G17V variant in most cases and a novel K18N in 3 cases, the latter showing activating properties in in vitro assays. Moreover, half of the patients carried virtually mutually exclusive mutations in other TCR-related genes, most frequently in PLCG1 (14.1%), CD28 (9.4%, exclusively in AITL), PI3K elements (7%), CTNNB1 (6%), and GTF2I (6%). Using in vitro assays in transfected cells, we demonstrated that 9 of 10 PLCG1 and 3 of 3 CARD11 variants induced MALT1 protease activity and increased transcription from NFAT or NF-κB response element reporters, respectively. Collectively, the vast majority of variants in TCR-related genes could be classified as gain-of-function. Accordingly, the samples with mutations in TCR-related genes other than RHOA had transcriptomic profiles enriched in signatures reflecting higher T-cell activation. Although no correlation with presenting clinical features nor significant impact on survival was observed, the presence of TCR-related mutations correlated with early disease progression. Thus, targeting of TCR-related events may hold promise for the treatment of TFH-derived lymphomas.
The EMBO Journal | 2011
Bernd Strasser; Justyna Iwaszkiewicz; Olivier Michielin; Andreas Mayer
The V‐ATPase V0 sector associates with the peripheral V1 sector to form a proton pump. V0 alone has an additional function, facilitating membrane fusion in the endocytic and late exocytic pathways. V0 contains a hexameric proteolipid cylinder, which might support fusion as proposed in proteinaceous pore models. To test this, we randomly mutagenized proteolipids. We recovered alleles that preserve proton translocation, normal SNARE activation and trans‐SNARE pairing but that impair lipid and content mixing. Critical residues were found in all subunits of the proteolipid ring. They concentrate within the bilayer, close to the ring subunit interfaces. The fusion‐impairing proteolipid substitutions stabilize the interaction of V0 with V1. Deletion of the vacuolar v‐SNARE Nyv1 has the same effect, suggesting that both types of mutations similarly alter the conformation of V0. Also covalent linkage of subunits in the proteolipid cylinder blocks vacuole fusion. We propose that a SNARE‐dependent conformational change in V0 proteolipids might stimulate fusion by creating a hydrophobic crevice that promotes lipid reorientation and formation of a lipidic fusion pore.
Journal of Biological Chemistry | 2010
Luz Angélica Liechti; Simon Bernèche; Benoîte Bargeton; Justyna Iwaszkiewicz; Sophie Roy; Olivier Michielin; Stephan Kellenberger
Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na+ channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pKa value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.
RNA Biology | 2013
Karine Lapouge; Remo Perozzo; Justyna Iwaszkiewicz; Claire Bertelli; Vincent Zoete; Olivier Michielin; Leonardo Scapozza; Dieter Haas
In the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens CHA0, the dimeric RNA-binding proteins RsmA and RsmE, which belong to the vast bacterial RsmA/CsrA family, effectively repress translation of target mRNAs containing a typical recognition sequence near the translation start site. Three small RNAs (RsmX, RsmY, RsmZ) with clustered recognition sequences can sequester RsmA and RsmE and thereby relieve translational repression. According to a previously established structural model, the RsmE protein makes optimal contacts with an RNA sequence 5′-A/UCANGGANGU/A-3′, in which the central ribonucleotides form a hexaloop. Here, we questioned the relevance of the hexaloop structure in target RNAs. We found that two predicted pentaloop structures, AGGGA (in pltA mRNA encoding a pyoluteorin biosynthetic enzyme) and AAGGA (in mutated pltA mRNA), allowed effective interaction with the RsmE protein in vivo. By contrast, ACGGA and AUGGA were poor targets. Isothermal titration calorimetry measurements confirmed the strong binding of RsmE to the AGGGA pentaloop structure in an RNA oligomer. Modeling studies highlighted the crucial role of the second ribonucleotide in the loop structure. In conclusion, a refined structural model of RsmE-RNA interaction accommodates certain pentaloop RNAs among the preferred hexaloop RNAs.
PLOS ONE | 2011
Esther Sala; Laura Guasch; Justyna Iwaszkiewicz; Miquel Mulero; Maria-Josepa Salvadó; Montserrat Pinent; Vincent Zoete; Aurélien Grosdidier; Santiago Garcia-Vallvé; Olivier Michielin; Gerard Pujadas
Background Their large scaffold diversity and properties, such as structural complexity and drug similarity, form the basis of claims that natural products are ideal starting points for drug design and development. Consequently, there has been great interest in determining whether such molecules show biological activity toward protein targets of pharmacological relevance. One target of particular interest is hIKK-2, a serine-threonine protein kinase belonging to the IKK complex that is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Indeed, this has led to the development of synthetic ATP-competitive inhibitors for hIKK-2. Therefore, the main goals of this study were (a) to use virtual screening to identify potential hIKK-2 inhibitors of natural origin that compete with ATP and (b) to evaluate the reliability of our virtual-screening protocol by experimentally testing the in vitro activity of selected natural-product hits. Methodology/Principal Findings We thus predicted that 1,061 out of the 89,425 natural products present in the studied database would inhibit hIKK-2 with good ADMET properties. Notably, when these 1,061 molecules were merged with the 98 synthetic hIKK-2 inhibitors used in this study and the resulting set was classified into ten clusters according to chemical similarity, there were three clusters that contained only natural products. Five molecules from these three clusters (for which no anti-inflammatory activity has been previously described) were then selected for in vitro activity testing, in which three out of the five molecules were shown to inhibit hIKK-2. Conclusions/Significance We demonstrated that our virtual-screening protocol was successful in identifying lead compounds for developing new inhibitors for hIKK-2, a target of great interest in medicinal chemistry. Additionally, all the tools developed during the current study (i.e., the homology model for the hIKK-2 kinase domain and the pharmacophore) will be made available to interested readers upon request.
PLOS ONE | 2013
Katrin Cabalzar; Christiane Pelzer; Annette Wolf; Georg Lenz; Justyna Iwaszkiewicz; Vincent Zoete; Stephan Hailfinger; Margot Thome
The mucosa-associated lymphoid tissue protein-1 (MALT1, also known as paracaspase) is a protease whose activity is essential for the activation of lymphocytes and the growth of cells derived from human diffuse large B-cell lymphomas of the activated B-cell subtype (ABC DLBCL). Crystallographic approaches have shown that MALT1 can form dimers via its protease domain, but why dimerization is relevant for the biological activity of MALT1 remains largely unknown. Using a molecular modeling approach, we predicted Glu 549 (E549) to be localized within the MALT1 dimer interface and thus potentially relevant. Experimental mutation of this residue into alanine (E549A) led to a complete impairment of MALT1 proteolytic activity. This correlated with an impaired capacity of the mutant to form dimers of the protease domain in vitro, and a reduced capacity to promote NF-κB activation and transcription of the growth-promoting cytokine interleukin-2 in antigen receptor-stimulated lymphocytes. Moreover, this mutant could not rescue the growth of ABC DLBCL cell lines upon MALT1 silencing. Interestingly, the MALT1 mutant E549A was unable to undergo monoubiquitination, which we identified previously as a critical step in MALT1 activation. Collectively, these findings suggest a model in which E549 at the dimerization interface is required for the formation of the enzymatically active, monoubiquitinated form of MALT1.
European Journal of Medicinal Chemistry | 2011
Esther Sala; Laura Guasch; Justyna Iwaszkiewicz; Miquel Mulero; Maria-Josepa Salvadó; Cinta Bladé; Meritxell Ceballos; Cristina Valls; Vincent Zoete; Aurélien Grosdidier; Santiago Garcia-Vallvé; Olivier Michielin; Gerard Pujadas
Human inhibitor NF-κB kinase 2 (hIKK-2) is the primary component responsible for activating NF-κB in response to various inflammatory stimuli. Thus, synthetic ATP-competitive inhibitors for hIKK-2 have been developed as anti-inflammatory compounds. We recently reported a virtual screening protocol (doi:10.1371/journal.pone.0016903) that is able to identify hIKK-2 inhibitors that are not structurally related to any known molecule that inhibits hIKK-2 and that have never been reported to have anti-inflammatory activity. In this study, a stricter version of this protocol was applied to an in-house database of 29,779 natural products annotated with their natural source. The search identified 274 molecules (isolated from 453 different natural extracts) predicted to inhibit hIKK-2. An exhaustive bibliographic search revealed that anti-inflammatory activity has been previously described for: (a) 36 out of these 453 extracts; and (b) 17 out of 30 virtual screening hits present in these 36 extracts. Only one of the remaining 13 hit molecules in these extracts shows chemical similarity with known synthetic hIKK-2 inhibitors. Therefore, it is plausible that a significant portion of the remaining 12 hit molecules are lead-hopping candidates for the development of new hIKK-2 inhibitors.
Journal of Immunology | 2016
Josée Golay; Sylvie Choblet; Justyna Iwaszkiewicz; Pierre Cérutti; Annick Ozil; Séverine Loisel; Martine Pugnière; Greta Ubiali; Vincent Zoete; Olivier Michielin; Christian Berthou; Jean Kadouche; Jean-Pierre Mach; Martine Duonor-Cérutti
We have designed and validated a novel generic platform for production of tetravalent IgG1-like chimeric bispecific Abs. The VH-CH1-hinge domains of mAb2 are fused through a peptidic linker to the N terminus of mAb1 H chain, and paired mutations at the CH1-CL interface mAb1 are introduced that force the correct pairing of the two different free L chains. Two different sets of these CH1-CL interface mutations, called CR3 and MUT4, were designed and tested, and prototypic bispecific Abs directed against CD5 and HLA-DR were produced (CD5xDR). Two different hinge sequences between mAb1 and mAb2 were also tested in the CD5xDR-CR3 or -MUT4 background, leading to bispecific Ab (BsAbs) with a more rigid or flexible structure. All four Abs produced bound with good specificity and affinity to CD5 and HLA-DR present either on the same target or on different cells. Indeed, the BsAbs were able to efficiently redirect killing of HLA-DR+ leukemic cells by human CD5+ cytokine-induced killer T cells. Finally, all BsAbs had a functional Fc, as shown by their capacity to activate human complement and NK cells and to mediate phagocytosis. CD5xDR-CR3 was chosen as the best format because it had overall the highest functional activity and was very stable in vitro in both neutral buffer and in serum. In vivo, CD5xDR-CR3 was shown to have significant therapeutic activity in a xenograft model of human leukemia.
Journal of Biological Chemistry | 2008
Oihana Capendeguy; Justyna Iwaszkiewicz; Olivier Michielin; Jean-Daniel Horisberger
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.Na,K-ATPase is the main active transport system that maintains the large gradients of Na+ and K+ across the plasma membrane of animal cells. The crystal structure of a K+-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the α subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr308 and Asp884 residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the β subunit, can be exposed to the exterior of the protein and can easily interact with the β subunit.
European Journal of Human Genetics | 2018
Periklis Makrythanasis; Reza Maroofian; Asbjørg Stray-Pedersen; Damir Musaev; Maha S. Zaki; Iman G. Mahmoud; Laila Selim; Amera Elbadawy; Shalini N. Jhangiani; Zeynep Coban Akdemir; Tomasz Gambin; Hanne Sørmo Sorte; Arvid Heiberg; Jennifer McEvoy-Venneri; Kiely N. James; Valentina Stanley; Denice Belandres; Michel Guipponi; Federico Santoni; Najmeh Ahangari; Fatemeh Tara; Mohammad Doosti; Justyna Iwaszkiewicz; Vincent Zoete; Paul Hoff Backe; Hanan Hamamy; Joseph G. Gleeson; James R. Lupski; Ehsan Ghayoor Karimiani
Kinesin proteins are critical for various cellular functions such as intracellular transport and cell division, and many members of the family have been linked to monogenic disorders and cancer. We report eight individuals with intellectual disability and microcephaly from four unrelated families with parental consanguinity. In the affected individuals of each family, homozygosity for likely pathogenic variants in KIF14 were detected; two loss-of-function (p.Asn83Ilefs*3 and p.Ser1478fs), and two missense substitutions (p.Ser841Phe and p.Gly459Arg). KIF14 is a mitotic motor protein that is required for spindle localization of the mitotic citron rho-interacting kinase, CIT, also mutated in microcephaly. Our results demonstrate the involvement of KIF14 in development and reveal a wide phenotypic variability ranging from fetal lethality to moderate developmental delay and microcephaly.