Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juxiang Cao is active.

Publication


Featured researches published by Juxiang Cao.


The EMBO Journal | 2009

Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity.

Juxiang Cao; Jennifer Schulte; Alexander Knight; Nick R. Leslie; Agnieszka Zagozdzon; Roderick T. Bronson; Yefim Manevich; Craig Beeson; Carola A. Neumann

It is widely accepted that reactive oxygen species (ROS) promote tumorigenesis. However, the exact mechanisms are still unclear. As mice lacking the peroxidase peroxiredoxin1 (Prdx1) produce more cellular ROS and die prematurely of cancer, they offer an ideal model system to study ROS‐induced tumorigenesis. Prdx1 ablation increased the susceptibility to Ras‐induced breast cancer. We, therefore, investigated the role of Prdx1 in regulating oncogenic Ras effector pathways. We found Akt hyperactive in fibroblasts and mammary epithelial cells lacking Prdx1. Investigating the nature of such elevated Akt activation established a novel role for Prdx1 as a safeguard for the lipid phosphatase activity of PTEN, which is essential for its tumour suppressive function. We found binding of the peroxidase Prdx1 to PTEN essential for protecting PTEN from oxidation‐induced inactivation. Along those lines, Prdx1 tumour suppression of Ras‐ or ErbB‐2‐induced transformation was mediated mainly via PTEN.


Cell Cycle | 2009

Peroxiredoxin 1 and its role in cell signaling

Carola A. Neumann; Juxiang Cao; Yefim Manevich

Peroxiredoxins (Prdxs) are a family of small (22-27kDa) non-seleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than “just simple peroxidases”. This hypothesis has been discussed elegantly in recent review articles, considering “over”-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (CP) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid , which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones10 with questionable H2O2-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H2O2 regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H2O2 modulating cell signaling via Prdxs by discussing: a) the activity of Prdxs towards H2O2; b) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; c) the availability of Prdxs reducing systems such as thioredoxin and sulfiredoxin and lastly, d) Prdx1 interacting signaling molecules.


Journal of Investigative Dermatology | 2013

Stat3-Targeted Therapies Overcome the Acquired Resistance to Vemurafenib in Melanomas

Fang Liu; Juxiang Cao; Jinxiang Wu; Kayleigh Sullivan; James Shen; Byungwoo Ryu; Zhi Xiang Xu; Wenyi Wei; Rutao Cui

Vemurafenib (PLX4032), a selective inhibitor of Braf, has been approved by the US Food and Drug Administration for the treatment of unresectable or metastatic melanoma in patients with Braf(V600E) mutations. Many patients treated with vemurafenib initially display dramatic improvement, with decreases in both risk of death and tumor progression. Acquired resistance, however, rapidly arises in previously sensitive cells. We attempted to overcome this resistance by targeting the signal transducer and activator of transcription 3 (STAT3)-paired box homeotic gene 3 (PAX3)-signaling pathway, which is upregulated, owing to fibroblast growth factor 2 (FGF2) secretion or increased kinase activity, with the Braf(V600E) mutation. We found that activation of Stat3 or overexpression of PAX3 induced resistance to vemurafenib in melanoma cells. In addition, PAX3 or Stat3 silencing inhibited the growth of melanoma cells with acquired resistance to vemurafenib. Furthermore, treatment with the Stat3 inhibitor, WP1066, resulted in growth inhibition in both vemurafenib-sensitive and -resistant melanoma cells. Significantly, vemurafenib stimulation induced FGF2 secretion from keratinocytes and fibroblasts, which might uncover, at least in part, the mechanisms underlying targeting Stat3-PAX3 signaling to overcome the acquired resistance to vemurafenib. Our results suggest that Stat3-targeted therapy is a new therapeutic strategy to overcome the acquired resistance to vemurafenib in the treatment of melanoma.


Cell Death & Differentiation | 2012

FGF2 regulates melanocytes viability through the STAT3-transactivated PAX3 transcription

Dong L; Yu-Lin Li; Juxiang Cao; Fang Liu; Pier E; Jianfeng Chen; Zhi Xiang Xu; Chen C; Wang Ra; Rutao Cui

PAX3 (paired box 3) is known to have an important role in melanocyte development through modulation of microphthalmia-associated transcription factor transcription. Here we found that PAX3 transcriptional activity could be regulated through FGF2 (basic fibroblast growth factor)-STAT3 (signal transducer and activator of transcription 3) signaling in the pigment cells. To study its function in vivo, we have generated a transgenic mouse model expressing PAX3 driven by tyrosinase promoter in a tissue-specific fashion. These animals exhibit hyperpigmentation in the epidermis, evident in the skin color of their ears and tails. We showed that the darker skin color results from both increased melanocyte numbers and melanin synthesis. Together, our study delineated a novel pathway in the melanocyte lineage, linking FGF2-STAT3 signaling to increased PAX3 transcription. Moreover, our results suggest that this pathway might contribute to the regulation of melanocyte numbers and melanin levels, and thereby provide an alternative strategy to induce pigmentation.


Pigment Cell & Melanoma Research | 2013

TBX2 expression is regulated by PAX3 in the melanocyte lineage

Fang Liu; Juxiang Cao; Jinghu Lv; Liang Dong; Eric Pier; George Xu; Wang Ra; Zhi Xiang Xu; Colin R. Goding; Rutao Cui

The paired box homeotic gene 3 (PAX3) is a crucial regulator for the maintenance of melanocytic progenitor cells and has a poorly defined role in melanoma. To understand how PAX3 affects melanocyte and melanoma proliferation, we identified potential PAX3 downstream targets through gene expression profiling. Here, we identify T‐box 2 (TBX2), a key developmental regulator of cell identity and an antisenescence factor in melanoma, as a directly regulated PAX3 target. We also found that TBX2 is involved in the survival of melanoma cells and is overexpressed in some melanoma specimens. The identification of TBX2 as a target for PAX3 provides a key insight into how PAX3 may contribute to melanoma evolution and may provide opportunities for prosenescence therapeutic intervention aimed at disrupting the ability of PAX3 to regulate TBX2.


ACS Chemical Biology | 2014

Protein kinase Cδ is a therapeutic target in malignant melanoma with NRAS mutation.

Asami Takashima; Brandon English; Zhihong Chen; Juxiang Cao; Rutao Cui; Robert M. Williams; Douglas V. Faller

NRAS is the second most frequently mutated gene in melanoma. Previous reports have demonstrated the sensitivity of cancer cell lines carrying KRAS mutations to apoptosis initiated by inhibition of protein kinase Cδ (PKCδ). Here, we report that PKCδ inhibition is cytotoxic in melanomas with primary NRAS mutations. Novel small-molecule inhibitors of PKCδ were designed as chimeric hybrids of two naturally occurring PKCδ inhibitors, staurosporine and rottlerin. The specific hypothesis interrogated and validated is that combining two domains of two naturally occurring PKCδ inhibitors into a chimeric or hybrid structure retains biochemical and biological activity and improves PKCδ isozyme selectivity. We have devised a potentially general synthetic protocol to make these chimeric species using Molander trifluorborate coupling chemistry. Inhibition of PKCδ, by siRNA or small molecule inhibitors, suppressed the growth of multiple melanoma cell lines carrying NRAS mutations, mediated via caspase-dependent apoptosis. Following PKCδ inhibition, the stress-responsive JNK pathway was activated, leading to the activation of H2AX. Consistent with recent reports on the apoptotic role of phospho-H2AX, knockdown of H2AX prior to PKCδ inhibition mitigated the induction of caspase-dependent apoptosis. Furthermore, PKCδ inhibition effectively induced cytotoxicity in BRAF mutant melanoma cell lines that had evolved resistance to a BRAF inhibitor, suggesting the potential clinical application of targeting PKCδ in patients who have relapsed following treatment with BRAF inhibitors. Taken together, the present work demonstrates that inhibition of PKCδ by novel small molecule inhibitors causes caspase-dependent apoptosis mediated via the JNK-H2AX pathway in melanomas with NRAS mutations or BRAF inhibitor resistance.


Journal of Clinical Investigation | 2017

Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation

Juxiang Cao; Magdalena E. Tyburczy; Joel Moss; Thomas N. Darling; Hans R. Widlund; David J. Kwiatkowski

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor-suppressor gene syndrome caused by inactivating mutations in either TSC1 or TSC2, and the TSC protein complex is an essential regulator of mTOR complex 1 (mTORC1). Patients with TSC develop hypomelanotic macules (white spots), but the molecular mechanisms underlying their formation are not fully characterized. Using human primary melanocytes and a highly pigmented melanoma cell line, we demonstrate that reduced expression of either TSC1 or TSC2 causes reduced pigmentation through mTORC1 activation, which results in hyperactivation of glycogen synthase kinase 3&bgr; (GSK3&bgr;), followed by phosphorylation of and loss of &bgr;-catenin from the nucleus, thereby reducing expression of microphthalmia-associated transcription factor (MITF), and subsequent reductions in tyrosinase and other genes required for melanogenesis. Genetic suppression or pharmacological inhibition of this signaling cascade at multiple levels restored pigmentation. Importantly, primary melanocytes isolated from hypomelanotic macules from 6 patients with TSC all exhibited reduced TSC2 protein expression, and 1 culture showed biallelic mutation in TSC2, one of which was germline and the second acquired in the melanocytes of the hypomelanotic macule. These findings indicate that the TSC/mTORC1/AKT/GSK3&bgr;/&bgr;-catenin/MITF axis plays a central role in regulating melanogenesis. Interventions that enhance or diminish mTORC1 activity or other nodes in this pathway in melanocytes could potentially modulate pigment production.


Cancer Discovery | 2017

The APC/C E3 ligase complex activator fzr1 restricts braf oncogenic function

Lixin Wan; Ming Chen; Juxiang Cao; Xiangpeng Dai; Qing Yin; Jinfang Zhang; Su Jung Song; Ying Lu; Jing Liu; Hiroyuki Inuzuka; Jesse M. Katon; Kelsey Berry; Jacqueline Fung; Christopher Ng; Pengda Liu; Min Sup Song; Lian Xue; Roderick T. Bronson; Marc W. Kirschner; Rutao Cui; Pier Paolo Pandolfi; Wenyi Wei

BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APCFZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR.See related commentary by Zhang and Bollag, p. 356This article is highlighted in the In This Issue feature, p. 339.


Science Signaling | 2015

The E3 ligase APC/C Cdh1 promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth

Juxiang Cao; Xiangpeng Dai; Lixin Wan; Hongshen Wang; Jinfang Zhang; Philip S. Goff; Elena V. Sviderskaya; Zhenyu Xuan; Zhi Xiang Xu; Xiaowei Xu; Philip W. Hinds; Keith T. Flaherty; Douglas V. Faller; Colin R. Goding; Yongjun Wang; Wenyi Wei; Rutao Cui

Loss of a ubiquitin ligase promotes melanoma growth. Sensitizing melanoma to chemotherapeutic drugs APC/C is an E3 ubiquitin ligase complex that coordinates aspects of the cell cycle by targeting cell cycle regulators, such as cyclins, for destruction. Cao et al. found that Cdh1, a component of this complex, restricted cell proliferation in melanocytes by promoting the degradation of the transcription factor PAX3. However, Cdh1 abundance was decreased in primary and advanced melanoma patient samples compared to normal skin tissue, and the abundance of PAX3 was increased. Restoring Cdh1 abundance in melanoma cells in culture and in xenografts in mice suppressed their proliferation and increased their sensitivity to the chemotherapeutic agent doxorubicin. The findings indicate that inhibition of Cdh1 could enable traditional chemotherapeutic drugs to be effective in melanoma. The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/CCdh1) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/CCdh1 may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)–induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/CCdh1 in melanocytes, and APC/CCdh1-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase–deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/CCdh1 in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.


PLOS ONE | 2016

Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex.

Yanan Guo; John R. Dreier; Juxiang Cao; Heng Du; Scott R. Granter; David J. Kwiatkowski

Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis.

Collaboration


Dive into the Juxiang Cao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyi Wei

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lixin Wan

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiangpeng Dai

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhi Xiang Xu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Colin R. Goding

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Fang Liu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carola A. Neumann

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

George Xu

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge