Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juxing Chen is active.

Publication


Featured researches published by Juxing Chen.


Cell Metabolism | 2009

Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression.

Junwei Gao; Juxing Chen; Maxwell Kramer; Hidekazu Tsukamoto; An Sheng Zhang; Caroline A. Enns

The mechanisms that allow the body to sense iron levels in order to maintain iron homeostasis are unknown. Patients with the most common form of hereditary iron overload have mutations in the hereditary hemochromatosis protein HFE. They have lower levels of hepcidin than unaffected individuals. Hepcidin, a hepatic peptide hormone, negatively regulates iron efflux from the intestines into the blood. We report two hepatic cell lines, WIF-B cells and HepG2 cells transfected with HFE, where hepcidin expression responded to iron-loaded transferrin. The response was abolished when endogenous transferrin receptor 2 (TfR2) was suppressed or in primary hepatocytes lacking either functional TfR2 or HFE. Furthermore, transferrin-treated HepG2 cells transfected with HFE chimeras containing only the alpha3 and cytoplasmic domains could upregulate hepcidin expression. Since the HFE alpha3 domain interacts with TfR2, these results supported our finding that TfR2/HFE complex is required for transcriptional regulation of hepcidin by holo-Tf.


Journal of Biological Chemistry | 2007

HFE Modulates Transferrin Receptor 2 Levels in Hepatoma Cells via Interactions That Differ from Transferrin Receptor 1-HFE Interactions

Juxing Chen; Maja Chloupková; Junwei Gao; Tara L. Chapman-Arvedson; Caroline A. Enns

Mutations in the transmembrane glycoproteins transferrin receptor 2 (TfR2) and HFE are associated with hereditary hemochromatosis. Interactions between HFE and transferrin receptor 1 (TfR1) have been mapped to the α1- and α2-helices in HFE and to the helical domain of TfR1. Recently, TfR2 was also reported to interact with HFE in transfected mammalian cells. To test whether similar HFE residues are important for both TfR1 and TfR2 binding, a mutant form of HFE (W81AHFE) that has a ∼5,000-fold lower affinity for TfR1 than HFE was employed. As expected, W81AHFE does not interact with TfR1. However, we found that the same mutation in HFE does not affect the TfR2/HFE interaction. This finding indicates that the TfR2/HFE and TfR1/HFE interactions are distinct. We further observed that, unlike TfR1/HFE, Tf does not compete with HFE for binding to TfR2 and that binding is independent of pH (pH 6–7.5). TfR2-TfR1 and HFE-HLA-B7 chimeras were generated to map the domains of the TfR2/HFE interaction. TfR1 and HLA-B7 were chosen because of their similar overall structures with TfR2 and HFE, respectively. We mapped the interacting domains to the putative stalk and protease-like domains of TfR2 located between residues 104 and 250 and to the α3 domain of HFE, both of which differ from the TfR1/HFE interacting domains. Furthermore, we found that HFE increases TfR2 levels in hepatic cells independent of holo-Tf.


Blood | 2010

Hepatocyte-targeted HFE and TFR2 control hepcidin expression in mice

Junwei Gao; Juxing Chen; Ivana De Domenico; David M. Koeller; Cary O. Harding; Robert E. Fleming; Dwight D. Koeberl; Caroline A. Enns

Hereditary hemochromatosis is caused by mutations in the hereditary hemochromatosis protein (HFE), transferrin-receptor 2 (TfR2), hemojuvelin, hepcidin, or ferroportin genes. Hepcidin is a key iron regulator, which is secreted by the liver, and decreases serum iron levels by causing the down-regulation of the iron transporter, ferroportin. Mutations in either HFE or TfR2 lower hepcidin levels, implying that both HFE and TfR2 are necessary for regulation of hepcidin expression. In this study, we used a recombinant adeno-associated virus, AAV2/8, for hepatocyte-specific expression of either Hfe or Tfr2 in mice. Expression of Hfe in Hfe-null mice both increased Hfe and hepcidin mRNA and lowered hepatic iron and Tf saturation. Expression of Tfr2 in Tfr2-deficient mice had a similar effect, whereas expression of Hfe in Tfr2-deficient mice or of Tfr2 in Hfe-null mice had no effect on liver or serum iron levels. Expression of Hfe in wild-type mice increased hepcidin mRNA and lowered iron levels. In contrast, expression of Tfr2 had no effect on wild-type mice. These findings suggest that Hfe is limiting in formation of the Hfe/Tfr2 complex that regulates hepcidin expression. In addition, these studies show that the use of recombinant AAV vector to deliver genes is a promising approach for studying physiologic consequences of protein complexes.


Journal of Biological Chemistry | 2010

Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression.

Julia E. Maxson; Juxing Chen; Caroline A. Enns; An Sheng Zhang

Hemojuvelin (HJV) is an important regulator of iron metabolism. Membrane-anchored HJV up-regulates expression of the iron regulatory hormone, hepcidin, through the bone morphogenic protein (BMP) signaling pathway by acting as a BMP co-receptor. HJV can be cleaved by the furin family of proprotein convertases, which releases a soluble form of HJV that suppresses BMP signaling and hepcidin expression by acting as a decoy that competes with membrane HJV for BMP ligands. Recent studies indicate that matriptase-2 binds and degrades HJV, leading to a decrease in cell surface HJV. In the present work, we show that matriptase-2 cleaves HJV at Arg288, which produces one major soluble form of HJV. This shed form of HJV has decreased ability to bind BMP6 and does not suppress BMP6-induced hepcidin expression. These results suggest that the matriptase-2 and proprotein convertase-cleavage products have different roles in the regulation of hepcidin expression.


Traffic | 2009

Transferrin-directed Internalization and Cycling of Transferrin Receptor 2

Juxing Chen; Jinzhi Wang; Kathrin R. Meyers; Caroline A. Enns

Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1) but has distinct functions from TfR1 in iron homeostasis. In keeping with its proposed role in iron sensing, previous studies showed that TfR2 has a short half‐life and that holo‐Tf stabilizes TfR2 by redirecting it from a degradative pathway to a recycling pathway. In this study, we characterized how the endocytosis, recycling and degradation of TfR2 relates to its function and differs from TfR1. TfR2 endocytosis was adaptor protein‐2 (AP‐2) dependent. Flow cytometry analysis showed that TfR1 and TfR2 utilized the same endocytic pathway only in the presence of holo‐Tf, indicating that holo‐Tf alters the interaction of TfR2 with the endocytic machinery. Unlike TfR1, phosphofurin acidic cluster sorting protein 1 (PACS‐1) binds to the cytoplasmic domain of TfR2 and data suggest that PACS‐1 is involved in the TfR2 recycling. Depletion of TSG101 by siRNA or expression of a dominant negative Vps4 inhibited TfR2 degradation, indicating that TfR2 degradation occurs through a multivesicular body (MVB) pathway. TfR2 degradation is not mediated through ubiquitination on the single lysine (K31) in the cytoplasmic domain or on the amino terminal residue. No ubiquitination of TfR2 by HA‐ubiquitin was detected, indicating a lack of direct TfR2 ubiquitination involvement in its degradation.


Cancer Biology & Therapy | 2009

Abnormal iron uptake and liver cancer.

Juxing Chen; Maja Chloupkova

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Iron overload represents a significant risk factor in the development of HCC. Hereditary hemochromatosis (HH) is a genetic iron overload disease characterized by hepatic iron accumulation. The potential link between these two conditions leads to significant curiosity about regulation of iron homeostasis. Importantly, one of the HH genes, HAMP, encodes the master regulator of iron homeostasis, hepcidin, which is expressed by hepatocytes. Recent studies have shown that the remaining HH genes are either upstream regulators (HFE, HFE2, and TFR2) or downstream targets (FPN) of hepcidin. Moreover, the presence of additional signaling pathways in the liver that contribute to regulation of hepcidin expression has been documented. The function of these iron-regulatory proteins is currently being investigated to determine if they play a role in abnormal iron uptake in tumors. This review summarizes these recent studies and briefly discusses new directions in the treatment of iron overload in HCC patients.


Biochimica et Biophysica Acta | 2012

Hereditary hemochromatosis and transferrin receptor 2.

Juxing Chen; Caroline A. Enns

BACKGROUND Multicellular organisms regulate the uptake of calories, trace elements, and other nutrients by complex feedback mechanisms. In the case of iron, the body senses internal iron stores, iron requirements for hematopoiesis, and inflammatory status, and regulates iron uptake by modulating the uptake of dietary iron from the intestine. Both the liver and the intestine participate in the coordination of iron uptake and distribution in the body. The liver senses inflammatory signals and iron status of the organism and secretes a peptide hormone, hepcidin. Under high iron or inflammatory conditions hepcidin levels increase. Hepcidin binds to the iron transport protein, ferroportin (FPN), promoting FPN internalization and degradation. Decreased FPN levels reduce iron efflux out of intestinal epithelial cells and macrophages into the circulation. Derangements in iron metabolism result in either the abnormal accumulation of iron in the body, or in anemias. The identification of the mutations that cause the iron overload disease, hereditary hemochromatosis (HH), or iron-refractory iron-deficiency anemia has revealed many of the proteins used to regulate iron uptake. SCOPE OF THE REVIEW In this review we discuss recent data concerning the regulation of iron homeostasis in the body by the liver and how transferrin receptor 2 (TfR2) affects this process. MAJOR CONCLUSIONS TfR2 plays a key role in regulating iron homeostasis in the body. GENERAL SIGNIFICANCE The regulation of iron homeostasis is important. One third of the people in the world are anemic. HH is the most common inherited disease in people of Northern European origin and can lead to severe health complications if left untreated. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Journal of Biological Chemistry | 2007

The Cytoplasmic Domain of Transferrin Receptor 2 Dictates Its Stability and Response to Holo-transferrin in Hep3B Cells

Juxing Chen; Caroline A. Enns

Transferrin receptor 2 (TfR2) is a homolog of transferrin receptor 1 (TfR1), the receptor responsible for the uptake of iron-loaded transferrin (holo-Tf) into cells. Unlike the ubiquitous TfR1, TfR2 is predominantly expressed in the liver. Mutations in TfR2 gene cause a rare autosomal recessive form of the iron overload disease, hereditary hemochromatosis. Previous studies demonstrated that holo-Tf increases TfR2 levels by stabilizing TfR2 at the protein level. In this study we constructed two chimeras, one of which had the cytoplasmic domain of TfR2 and the remaining portion of TfR1 and the other with the cytoplasmic and transmembrane domain of TfR1 joined to the ectodomain of TfR2. Similar to TfR2, the levels of the chimera containing only the cytoplasmic domain of TfR2 increased in a time- and dose-dependent manner after the addition of holo-Tf to the medium. The half-life of the chimera increased 2.7-fold in cells exposed to holo-Tf like the endogenous TfR2 in HepG2 cells. Like TfR2 and unlike TfR1, the levels of the chimera did not respond to intracellular iron content. These results suggest that although holo-Tf binding to the ectodomain is necessary, the cytoplasmic domain of TfR2 is largely responsible for its stabilization by holo-Tf.


PLOS ONE | 2013

Ferristatin II Promotes Degradation of Transferrin Receptor-1 In Vitro and In Vivo

Shaina L. Byrne; Peter D. Buckett; Jonghan Kim; Flora Luo; Jack C. Sanford; Juxing Chen; Caroline A. Enns; Marianne Wessling-Resnick

Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.


Journal of Biological Chemistry | 2015

CD81 Promotes Both the Degradation of Transferrin Receptor 2 (TfR2) and the Tfr2-mediated Maintenance of Hepcidin Expression

Juxing Chen; Caroline A. Enns

Background: Loss of function mutations in TfR2 cause iron overload in the body. Results: CD81, a scaffold protein, controls the level of TfR2 and links TfR2 to E3 ligase, GRAIL. Conclusion: CD81 down-regulates TfR2 and increases hepcidin levels in Hep3B cells. Significance: The association of TfR2 with CD81 controls both TfR2 trafficking and hepcidin mRNA. Mutations in transferrin receptor 2 (TfR2) cause a rare form of the hereditary hemochromatosis, resulting in iron overload predominantly in the liver. TfR2 is primarily expressed in hepatocytes and is hypothesized to sense iron levels in the blood to positively regulate the expression of hepcidin through activation of the BMP signaling pathway. Hepcidin is a peptide hormone that negatively regulates iron egress from cells and thus limits intestinal iron uptake. In this study, a yeast two-hybrid approach using the cytoplasmic domain of TfR2 identified CD81 as an interacting protein. CD81 is an abundant tetraspanin in the liver. Co-precipitations of CD81 with different TfR2 constructs demonstrated that both the cytoplasmic and ecto-transmembrane domains of TfR2 interact with CD81. Knockdown of CD81 using siRNA significantly increased TfR2 levels by increasing the half-life of TfR2, indicating that CD81 promotes degradation of TfR2. Previous studies showed that CD81 is targeted for degradation by GRAIL, an ubiquitin E3 ligase. Knockdown of GRAIL in Hep3B-TfR2 cells increased TfR2 levels, consistent with inhibition of CD81 ubiquitination. These results suggest that down-regulation of CD81 by GRAIL targets TfR2 for degradation. Surprisingly, knockdown of CD81 decreased hepcidin expression, implying that the TfR2/CD81 complex is involved in the maintenance of hepcidin mRNA. Moreover, knockdown of CD81 did not affect the stimulation of hepcidin expression by BMP6 but increased both the expression of ID1 and SMAD7, direct targets of BMP signaling pathway, and the phosphorylation of ERK1/2, indicating that the CD81 regulates hepcidin expression differently from the BMP and ERK1/2 signaling pathways.

Collaboration


Dive into the Juxing Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge