Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juxiu Liu is active.

Publication


Featured researches published by Juxiu Liu.


Global Change Biology | 2013

A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China

Guoyi Zhou; Changhui Peng; Yuelin Li; Shizhong Liu; Qianmei Zhang; Xuli Tang; Juxiu Liu; Junhua Yan; Deqiang Zhang; Guowei Chu

Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought-induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of Chinas forested land. In this study, we describe how the monsoon evergreen broad-leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad-leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long-term climate change.


Plant and Soil | 2013

Increasing phosphorus limitation along three successional forests in southern China

Wenjuan Huang; Juxiu Liu; Ying Ping Wang; Guoyi Zhou; Tianfeng Han; Yin Li

Background and AimsPhosphorus (P) is commonly one of most limiting nutrients in tropical and subtropical forests, but whether P limitation would be exacerbated during forest succession remains unclear.MethodsSoil phosphatase activity is often used as an indicator of P limitation. Here we examined soil acid phosphatase activity (APA) underneath tree species in pine forest (PF), mixed pine and broadleaf forest (MF) and monsoon evergreen broadleaf forest (MEBF) which represented the early, middle and late successional stages of subtropical forests in China, respectively. We also analyzed other indicators of P status (soil available P and N and P stoichiometry of the tree species).ResultsAPA or APA per unit soil organic carbon under tree species was relatively low in the early successional forest. Different from PF and MF, soil available P beneath the tree species was lower than in the bulk soils in MEBF. Soil APA was closely related to N:P ratios of tree species across all three forests.ConclusionsOur results imply that P limitation increases during forest succession at our site. The dominant tree species with low soil APAs in MEBF are likely more P-limited than other tree species.


Global Change Biology | 2014

Substantial reorganization of China's tropical and subtropical forests: based on the permanent plots

Guoyi Zhou; Benjamin Z. Houlton; Wantong Wang; Wenjuan Huang; Yin Xiao; Qianmei Zhang; Shizhong Liu; Min Cao; Xihua Wang; S. K. Wang; Yiping Zhang; Junhua Yan; Juxiu Liu; Xuli Tang; Deqiang Zhang

There is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined Chinas tropical and subtropical evergreen broadleaved forests (TEBF) that cover >26% of Chinas terrestrial land. The sustainability of this biome is vital to the maintenance of local ecosystem services (e.g., carbon sequestration, biodiversity conservation, climatic regulation), many of which may influence patterns of atmospheric circulation and composition at regional to global scales. Here, we analyze time-series data collected from thirteen permanent plots within Chinas unmanaged TEBF to study whether and how this biome has changed over recent decades. We find that the numbers of individuals and species for shrub and small tree have increased since 1978, whereas the numbers of individuals and species for tree have decreased over this same time period. The shift in species composition is accompanied by a decrease in the mean diameter at breast height (DBH) for all individuals combined. Chinas TEBF may thereby be transitioning from cohorts of fewer and larger individuals to ones of more and smaller individuals, which shows a unique change pattern differing from the documented. Regional-scale drying is likely responsible for the biomes reorganization. This biome-wide reconstitution would deeply impact the regimes of carbon sequestration and biodiversity conservation and have implications for the sustainability of economic development in the area.


PLOS ONE | 2012

Effects of Precipitation Increase on Soil Respiration: A Three-Year Field Experiment in Subtropical Forests in China

Qi Deng; Dafeng Hui; Deqiang Zhang; Guoyi Zhou; Juxiu Liu; Shizhong Liu; Guowei Chu; Jiong Li

Background The aim of this study was to determine response patterns and mechanisms of soil respiration to precipitation increases in subtropical regions. Methodology/Principal Findings Field plots in three typical forests [i.e. pine forest (PF), broadleaf forest (BF), and pine and broadleaf mixed forest (MF)] in subtropical China were exposed under either Double Precipitation (DP) treatment or Ambient Precipitation (AP). Soil respiration, soil temperature, soil moisture, soil microbial biomass and fine root biomass were measured over three years. We tested whether precipitation treatments influenced the relationship of soil respiration rate (R) with soil temperature (T) and soil moisture (M) using R = (a+cM)exp(bT), where a is a parameter related to basal soil respiration; b and c are parameters related to the soil temperature and moisture sensitivities of soil respiration, respectively. We found that the DP treatment only slightly increased mean annual soil respiration in the PF (15.4%) and did not significantly change soil respiration in the MF and the BF. In the BF, the increase in soil respiration was related to the enhancements of both soil fine root biomass and microbial biomass. The DP treatment did not change model parameters, but increased soil moisture, resulting in a slight increase in soil respiration. In the MF and the BF, the DP treatment decreased soil temperature sensitivity b but increased basal soil respiration a, resulting in no significant change in soil respiration. Conclusion/Significance Our results indicate that precipitation increasing in subtropical regions in China may have limited effects on soil respiration.


Acta Physiologiae Plantarum | 2007

Responses of chlorophyll fluorescence and xanthophyll cycle in leaves of Schima superba Gardn. & Champ. and Pinus massoniana Lamb. to simulated acid rain at Dinghushan Biosphere Reserve, China

Juxiu Liu; Guoyi Zhou; Cheng-Wei Yang; Zhiying Ou; Chang-Lian Peng

Schima superba and Pinus massoniana distributed over large areas in southern China both are dominant species at Dinghushan Biosphere Reserve. In the present study, the changes of chlorophyll fluorescence and xanthophyll cycle in the leaves of S. superba and P. massoniana exposed to simulated acid rain (SAR) were measured. When exposed to high light, the PSII photochemistry efficiency (Fv/Fm), efficiency of energy conversion in PSII (ΦPSII) and photochemical quenching (qP) of both S. superba and P. massoniana all decreased when acidity of SAR increased. Regarding non-photochemical quenching (qN), S. superba exposed to SAR had higher value than control plants, but there was no significant difference between the respective seedlings of P. massoniana. As for xanthophyll cycle of the two plant species, the leaves of S. superba exposed to SAR showed a higher content of carotenoids and a higher ability to convert violaxanthin to zeaxanthin than leaves of P. massoniana, which was consistent with S. superba exhibiting a stronger resistance to high light than P. massoniana. Although both species were susceptible to acid rain as shown by our results, P. massoniana was more susceptible compared to S. superba. These results provide an insight into how to protect the forest ecosystem at Dinghushan Biosphere Reserve.


Global Change Biology | 2014

Interactions between CO2 enhancement and N addition on net primary productivity and water‐use efficiency in a mesocosm with multiple subtropical tree species

Junhua Yan; Deqiang Zhang; Juxiu Liu; Guoyi Zhou

Carbon dioxide (CO2 ) enhancement (eCO2 ) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water-use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m(-2) yr(-1) ) and eCO2 × aN using open-top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2 , increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2 , aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (P = 0.731) or WUE (P = 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast-growing species (Schima superba). Nitrogen-fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change.


PLOS ONE | 2013

Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

Guohua Liang; Xingzhao Liu; Xiaomei Chen; Qingyan Qiu; Deqiang Zhang; Guowei Chu; Juxiu Liu; Shizhong Liu; Guoyi Zhou

The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.


Scientific Reports | 2016

Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: Evidence from a global-scale meta-analysis.

Wenjuan Huang; Benjamin Z. Houlton; Alison R. Marklein; Juxiu Liu; Guoyi Zhou

Rising levels of atmospheric CO2 have been implicated in changes in the nitrogen (N) and phosphorus (P) content of terrestrial vegetation; however, questions remain over the role of C, N and P interactions in driving plant nutrient stoichiometry, particularly whether N and P additions alter vegetation responses to CO2 enrichment singly. Here we use meta-analysis of 46 published studies to investigate the response of plant N and P to elevated CO2 alone and in combination with nutrient (N and P) additions across temperate vs. tropical biomes. Elevated CO2 reduces plant N concentrations more than plant P concentrations in total biomass pools, resulting in a significant decline in vegetation N/P. However, elevated CO2 treatments in combination with N additions increase plant P concentrations, whereas P additions have no statistical effect on plant N concentrations under CO2 enrichment. These results point to compensatory but asymmetrical interactions between N, P and CO2; that changes in N rapidly alter the availability of P, but not the converse, in response to increased CO2. Our finding implies widespread N limitation with increasing atmospheric CO2 concentrations alone. We also suggest that increased anthropogenic N deposition inputs could enhance plant N and P in a progressively CO2-enriched biosphere.


Scientific Reports | 2015

CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.

Juxiu Liu; Xiong Fang; Qi Deng; Tianfeng Han; Wenjuan Huang; Yiyong Li

As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change.


Environmental Pollution | 2012

Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems

Wenjuan Huang; Guoyi Zhou; Juxiu Liu; Deqiang Zhang; Zhihong Xu; Shizhong Liu

The effects of elevated carbon dioxide (CO2) and nitrogen (N) addition on foliar N and phosphorus (P) stoichiometry were investigated in five native tree species (four non-N2 fixers and one N2 fixer) in open-top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios were largely determined by P dynamics rather than N under both elevated CO2 and N addition. Foliar N:P ratios in the non-N2 fixers showed some negative responses to elevated CO2, while N addition reduced foliar N:P ratios in the N2 fixer. The results suggest that N addition would facilitate the N2 fixer rather than the non-N2 fixers to regulate the stoichiometric balance under elevated CO2.

Collaboration


Dive into the Juxiu Liu's collaboration.

Top Co-Authors

Avatar

Guoyi Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Deqiang Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjuan Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shizhong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guowei Chu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Junhua Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuelin Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xuli Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yiyong Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge