Jyh-Chong Liang
National Taiwan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jyh-Chong Liang.
International Journal of Science Education | 2012
Guo-Li Chiou; Jyh-Chong Liang; Chin-Chung Tsai
This study reports the findings of a study which examined the relationship between conceptions of learning and approaches to learning in biology. This study, which used structural equation modelling, also sorted to identify gender differences in the relationship. Two questionnaires, the Conceptions of Learning Biology (COLB) and the Approaches to Learning Biology (ALB), were developed to investigate 582 undergraduate biology majors’ (275 females and 307 males) conceptions of and approaches to learning biology, respectively. The results indicate a general trend that, while the students possessing lower-level COLB, ‘Memorizing’, ‘Testing’, and ‘Calculating and Practising’, tend to adopt a surface approach to learning in biology, the students expressing higher-level conceptions, ‘Increasing one’s knowledge’, ‘Application’, and ‘Understanding and seeing in a new way’, are more likely to adopt a deep approach to learning in biology. This study also found several salient gender differences in the COLB, as well as in the way in which the COLB affected the ALB. For example, female students tended to express more sophisticated COLB than male students. The ‘Memorizing’ conception of learning biology held by male students is inclined to engender both deep motive and deep strategy, but this tendency was not found among the female students.
International Journal of Science Education | 2010
Jyh-Chong Liang; Chin-Chung Tsai
In recent years, there has been an increasing interest among educational researchers in exploring the relationships between learners’ epistemological beliefs and their conceptions of learning. This study was conducted to investigate these relationships particularly in the domain of science. The participants in this study included 407 Taiwanese college science‐major students. All of them responded to two major questionnaires, one assessing their scientific epistemological beliefs (SEBs) and the other one probing their conceptions of learning science (COLS). The SEB questionnaire included four factors: “certainty,” “source,” “development,” and “justification” of science knowledge. The COLS survey consisted of six factors in a hierarchical order, that is, learning science as “memorizing,” “preparing for tests,” “calculating and practicing,” “increasing one’s knowledge,” “application,” and “understanding and seeing in a new way.” The students’ confidence and interest toward learning science were also assessed by additional questionnaire items. Stepwise regression analyses, in general, showed coherence between students’ SEBs and their COLS, indicating that the sophistication of SEBs was consistent with less agreement with lower‐level COLS (such as “memorizing” and “preparing for tests”) as well as more agreement with higher‐level COLS (such as “understanding and seeing in a new way”). However, the SEB’s “justification” factor was positively related to almost all of COLS factors from the lower‐level to higher‐level. This study finally found that among all of the SEB and COLS factors, the “preparing for tests” factor in COLS was the solely significant variable for predicting students’ interest in science and confidence toward learning science.
Toxicology | 2009
Shu-Fen Liou; Hung-Hong Lin; Jyh-Chong Liang; Ing-Jun Chen; Jwu-Lai Yeh
In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective alpha(1)-adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of alpha(1)-adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G(0)/G(1) arrest, and G(2)/M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its alpha(1)-adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through caspases and MAPKs mediated pathways.
Pharmacological Research | 2009
Jiunn-Ren Wu; Shu-Fen Liou; Shin-Wha Lin; Chee-Yin Chai; Zen-Kong Dai; Jyh-Chong Liang; Ing-Jun Chen; Jwu-Lai Yeh
Lercanidipine, a calcium channel antagonist, is currently employed in the treatment of essential hypertension and angina pectoris. The purpose of this study was to elucidate the anti-proliferative effect of lercanidipine and to investigate the molecular role of this agent. Both in vitro studies and in a balloon injury rat carotid artery model were employed to study the effect of lercanidipine on smooth muscle cell proliferation. Lercanidipine-inhibited rat vascular smooth muscle cell (VSMC) proliferation and migration in a dose-dependent manner following stimulation of VSMC cultures with 10% fetal bovine serum (FBS) and 20 ng/ml platelet-derived growth factor (PDGF)-BB. FBS- and PDGF-BB-stimulated intracellular Ras, MEK1/2, ERK1/2, proliferative cell nuclear antigen (PCNA), and Akt activations were significantly inhibited by lercanidipine; however, lercanidipine did not affect FBS- and PDGF-BB-induced STAT3 phosphorylation. Lercanidipine also inhibited PDGF-receptor beta chain phosphorylation and reactive oxygen species (ROS) production induced by PDGF-BB. Lercanidipine blocked the FBS-inducible progression through the G(0)/G(1) to the S-phase of the cell cycle in synchronized cells. In vivo, 14 days after balloon injury, treatment with 3 and 10 mg/kg lercanidipine resulted in significant inhibition of the neointima/media ratio. Suppression of neointima formation by lercanidipine was dependent on its influence on ERK1/2 phosphorylation. These results demonstrate that lercanidipine can suppress the proliferation of VSMCs via inhibiting cellular ROS, Ras-MEK1/2-ERK1/2, and PI3K-Akt pathways, and suggesting that it may have therapeutic relevance in the prevention of human restenosis.
Journal of Cardiovascular Pharmacology | 2000
Jwu-Lai Yeh; Shwu-Fen Liou; Jyh-Chong Liang; Yeun-Chih Huang; Lien-Chai Chiang; Jiunn-Ren Wu; Young-Tso Lin; Ing-Jun Chen
Calcium channel and beta-adrenoceptor blockade have proved highly useful in antihypertensive therapy. Studies of the mechanisms of action of vanidipinedilol that combine these effects within a single molecule are described here. Intravenous injection of vanidipinedilol (0.1, 0.25, 0.5, 1.0, and 2.0 mg/kg) produced dose-dependent hypotensive and bradycardic responses, significantly different from nifedipine-induced (0.5 mg/kg, i.v.) hypotensive and reflex tachycardic effects in pentobarbital-anesthetized Wistar rats. A single oral administration of vanidipinedilol at doses of 10, 25, and 50 mg/kg dose-dependently reduced blood pressure with a decrease in heart rate in conscious spontaneously hypertensive rats (SHRs). In the isolated Wistar rat atrium, vanidipinedilol (10(-7), 10(-6), and 10(-5) M) competitively antagonized the (-)isoproterenol-induced positive chronotropic and inotropic effects and inhibited the increase in heart rate induced by Ca2+ (3.0-9.0 mM) in a concentration-dependent manner. The parallel shift to the right of the concentration-response curve of (-)isoproterenol and CaCl2 suggested that vanidipinedilol possessed beta-adrenoceptor-blocking and calcium entry-blocking activities. On tracheal strips of reserpinized guinea pig, cumulative doses of vanidipinedilol (10(-10) to 3x10(-6) M) produced dose-dependent relaxant responses. Preincubating the preparation with ICI 118,551 (10(-10), 10(-9), 10(-8) M), a beta2-adrenoceptor antagonist, shifted the vanidipinedilol concentration-relaxation curve significantly to a region of higher concentrations. These results implied that vanidipinedilol had a partial beta2-agonist activity. In the isolated thoracic aorta of rat, vanidipinedilol had a potent effect inhibiting high-K+-induced contractions. KCI-induced intracellular calcium changes of blood vessel smooth muscle cell (A7r5 cell lines) determined by laser cytometry also was decreased after administration of vanidipinedilol (10(-8), 10(-7), 10(-6) M). Furthermore, the binding characteristics of vanidipinedilol and various antagonists were evaluated in [3H]CGP-12177 binding to ventricle and lung and [3H]nitrendipine binding to cerebral cortex membranes in rats. The order of potency of beta1- and beta2-adrenoceptor antagonist activity against [3H]CGP-12177 binding was (-)propranolol (pKi, 8.59 for beta1 and 8.09 for beta2) > vanidipinedilol (pKi, 7.09 for beta1 and 6.64 for beta2) > atenolol (pKi, 6.58 for beta1 and 5.12 for beta2). The order of potency of calcium channel antagonist activity against [3H]nitrendipine binding was nifedipine (pKi, 9.36) > vanidipinedilol (pKi, 8.07). The ratio of beta1-adrenergic-blocking/calcium entry-blocking selectivity is 0.1 and indicated that vanidipinedilol revealed more in calcium entry-blocking than in beta-adrenergic-blocking activities. It has been suggested that vanidipinedilol-induced smooth muscle relaxation may involve decreased entry of Ca2+ and partial beta2-agonist activities. In conclusion, vanidipinedilol is a nonselective beta-adrenoceptor antagonist with calcium channel blocking and partial beta2-agonist associated vasorelaxant and tracheal relaxant activities. Particularly, the vasodilator effects of vanidipinedilol are attributed to a synergism of its calcium entry blocking and partial beta2-agonist activities in the blood vessel. A sustained bradycardic effect results from beta-adrenoceptor blocking and calcium entry blocking, which blunts the sympathetic activation-associated reflex tachycardia in the heart.
Journal of Cardiovascular Pharmacology | 2004
Shu-Fen Liou; Jwu-Lai Yeh; Jyh-Chong Liang; Chaw-Chi Chiu; Young-Tso Lin; Ing-Jun Chen
Labedipinedilol-A is a novel 1, 4-dihydropyridine type calcium antagonist with alpha-receptor blocking activity. This study investigates the effects of labedipinedilol-A on mitogen-induced proliferation of rat vascular smooth muscle cells (VSMCs). Labedipinedilol-As inhibition on cell proliferation was measured by the tetrazolium salt (XTT) test. Labedipinedilol-A dose-dependently inhibited mitogen-induced DNA synthesis, determined by the incorporation of 5-bromo-2′-deoxyuridine (BrdU). Labedipinedilol-A was also found capable of inhibiting the migration of VSMCs induced by PDGF-BB with an IC50 value of 5.6 μM. In accordance with these findings, labedipinedilol-A revealed blocking of the FBS-inducible progression through G0/G1 to S phase of the cell cycle in synchronized cells. Labedipinedilol-A appeared to cause inhibition of mitogens-induced PKC translocation, suggesting the probable involvement of protein kinase C (PKC) in this cellular response. Labedipinedilol-A reduced both intracellular Ca2+ and the phosphorylation of extracellular signal-regulated protein kinase 1/2 in PDGF-BB-stimulated VSMCs. It also suppressed the levels of proliferative cell nuclear antigen (PCNA) in VSMCs both time- and dose-dependently. These results indicate that labedipinedilol-A may inhibit cell proliferation by attenuating activation of the ERK 1/2 pathway, which is regulated by PKC and Ca2+, suggesting that it may have great potential in the prevention of progressive atherosclerosis.
Evidence-based Complementary and Alternative Medicine | 2011
Shu-Fen Liou; Hung-Jen Ke; Jong-Hau Hsu; Jyh-Chong Liang; Hung-Hong Lin; Ing-Jun Chen; Jwu-Lai Yeh
San-Huang-Xie-Xin-Tang (SHXT) is a traditional Chinese medication consisting of three herbs, namely Coptidis rhizome, Scutellariae radix and Rhei rhizome. This study aimed to examine the cardioprotective effects of SHXT in a rat model of acute myocardial apoptosis induced by ischemia/reperfusion (I/R). Vehicle (intravenous saline) or SHXT (intravenous or oral) was administered prior to I/R (occlusion of left coronary artery for 45 min followed by reperfusion for 2 h). In the vehicle group, myocardial I/R caused myocardial infarction with increased plasma cardiac enzymes, severe arrhythmia and mortality. Myocardial apoptosis was induced by I/R as evidenced by DNA ladder and Bcl-2/Bax ratio. In the SHXT group, we found that SHXT significantly reduced plasma levels of cardiac enzymes, arrhythmia scores (from 5 ± 1 to 2 ± 1, P < .01) and mortality rate (from 53 to 0%, P < .01). In addition, pretreatment with intravenous SHXT reduced the infarct size dose-dependently when compared with the vehicle group (10 mg kg−1: 14.0 ± 0.2 versus 44.5 ± 5.0%, and 30 mg kg−1: 6.2 ± 1.2% versus 44.5 ± 5.0%, both P < .01). Similarly, oral administration of SHXT reduced the infarct size dose-dependently. Furthermore, SHXT markedly decreased the apoptosis induced by I/R with increased Bcl-2/Bax ratio. Finally, we found that SHXT counteracted the I/R-induced downstream signaling, resulting in increased myocardial eNOS expression and plasma nitrite, and decreased activation of ERK1/2, p38 and JNK. These data suggest that SHXT has cardioprotective effects against I/R-induced apoptosis, and that these effects are mediated, at least in part, by eNOS and MAPK pathways.
International Journal of Science Education | 2015
Tzu-Chiang Lin; Jyh-Chong Liang; Chin-Chung Tsai
This study aims to explore Taiwanese university students’ conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students’ conceptions of memorizing and understanding was validated through an exploratory factor analysis of participants’ responses. As for the questionnaire regarding the students’ biology learning self-efficacy (BLSE), an exploratory factor analysis revealed a total of four factors including higher-order cognitive skills (BLSE-HC), everyday application (BLSE-EA), science communication (BLSE-SC), and practical works (BLSE-PW). The results of the cluster analysis according to the participants’ conceptions of learning biology indicated that students in the two major clusters either viewed learning biology as understanding or possessed mixed-conceptions of memorizing and understanding. The students in the third cluster mainly focused on memorizing in their learning while the students in the fourth cluster showed less agreement with both conceptions of memorizing and understanding. This study further revealed that the conception of learning as understanding was positively associated with the BLSE of university students with biology-related majors. However, the conception of learning as memorizing may foster students’ BLSE only when such a notion co-exists with the conception of learning with understanding.
International Journal of Science Education | 2015
Hsin-Ning Jessie Ho; Jyh-Chong Liang
This study explores the relationships among Taiwanese high school students’ scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling technique was utilized to reveal that the students’ absolutist SEBs led to reproduced COLS (i.e. learning science as memorizing, preparing for tests, calculating, and practicing) while sophisticated SEBs were related to constructive COLS (i.e. learning science as increase of knowledge, applying, and attaining understanding). The students’ reproduced COLS were also negatively associated with surface motive of learning science, whereas the constructive COLS were positively correlated with students’ deep motive of learning science. Finally, this study found that students who viewed scientific knowledge as uncertain (advanced epistemic belief) tended to possess a surface motive of learning science. This finding implies that the implementation of standardized tests diminishes Taiwanese high school students’ curiosity and interest in engaging deeply in science learning.
International Journal of Science Education | 2016
Silvia Wen-Yu Lee; Jyh-Chong Liang; Chin-Chung Tsai
ABSTRACT This study investigated the relationships among college students’ epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely ‘multiple-source,’ ‘uncertainty,’ ‘development,’ and ‘justification.’ COLB is further divided into ‘constructivist’ and ‘reproductive’ conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students’ epistemic beliefs of ‘uncertainty’ and ‘justification’ in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and ‘uncertainty’ was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that ‘uncertainty’ predicted surface strategies through the mediation of ‘reproductive’ conceptions; and the relationship between ‘justification’ and deep strategies was mediated by ‘constructivist’ COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students’ learning.