Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jyh-Jye Wang is active.

Publication


Featured researches published by Jyh-Jye Wang.


Journal of Neuroscience Research | 2007

Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β-infused rat by repressing amyloid β accumulation

Chun-Lin Lee; Tzong-Fu Kuo; Jyh-Jye Wang; Tzu-Ming Pan

Amyloid β (Aβ) peptide related to the onset of Alzheimers disease (AD) damaged neurons and further resulted in dementia. Monascus‐fermented red mold rice (RMR), a traditional Chinese medicine as well as health food, includes monacolins (with the same function as statins) and multifunctional metabolites. In this study, ethanol extract of RMR (RE) was used to evaluate neuroprotection against Aβ40 neurotoxicity in PC12 cells. Furthermore, the effects of dietary administration of RMR on memory and learning abilities are confirmed in an animal model of AD rats infused with Aβ40 into the cerebral ventricle. During continuous Aβ40 infusion for 28 days, the rats of test groups were administered RMR or lovastatin. Memory and learning abilities were evaluated in the water maze and passive avoidance tasks. After sacrifice, cerebral cortex and hippocampus were collected for the examination of AD risk factors. The in vitro results clearly indicate that RE provides stronger neuroprotection in rescuing cell viability as well as repressing inflammatory response and oxidative stress. RMR administration potently reverses the memory deficit in the memory task. Aβ40 infusion increases acetylcholinesterase activity, reactive oxygen species, and lipid peroxidation and decreases total antioxidant status and superoxide dismutase activity in brain, but these damages were potently reversed by RMR administration, and the protection was more significant than that with lovastatin administration. The protection provided by RMR is able to prevent Aβ fibrils from being formed and deposited in hippocampus and further decrease Aβ40 accumulation, even though Aβ40 solution was infused into brain continuously.


Journal of Agricultural and Food Chemistry | 2010

Red Mold Rice Promotes Neuroprotective sAPPalpha Secretion Instead of Alzheimer’s Risk Factors and Amyloid Beta Expression in Hyperlipidemic Aβ40-Infused Rats

Chun-Lin Lee; Tzong-Fu Kuo; Cheng-Lun Wu; Jyh-Jye Wang; Tzu-Ming Pan

Amyloid beta (Abeta) peptide is closely related to the onset of Alzheimers disease (AD). A high-cholesterol or high-energy diet was demonstrated to stimulate Abeta formation and deposition in the amyloid precursor protein (APP) pathway and, oppositely, downregulate the secretion of the neuroprotective soluble APP alpha-fragment (sAPPalpha). Monascus-fermented red mold rice (RMR) including multiple cholesterol-lowering agents, antioxidants, and anti-inflammatory agents has been proven to ameliorate Abeta40 infusion-induced memory deficit in our previous study. In this study, the ethanol extract of RMR (RE) and natural RMR were respectively tested for their effect on the mediation of the proteolytic process of APP in cholesterol-treated human neuroblastoma IMR32 cell, as well as their effect on memory and learning ability and the expression of AD risk factors in intracerebroventricular Abeta40-infused hyperlipidemic rats. In the results, RE suppressed cholesterol-raised beta-secretase activity and further resulted in the increase of sAPPalpha secretion in the IMR32 cell. In the animal test, RMR potently reversed the memory deficit in the water maze and passive avoidance tasks. RMR administration could prevent against Abeta40 infusion plus the great damage caused by a high energy diet in hippocampus and cortex involved in the raise of thiobarbituric acid reactive substances and reactive oxygen species. The neuroprotection provided by RMR downregulates Abeta40 formation and deposition by suppressing the cholesterol-raised beta-secretase activity and apolipoprotein E expression, as well as mediates the proteolytic process of APP toward neuroprotective sAPPalpha secretion in hippocampus.


Applied Microbiology and Biotechnology | 2008

Red mold rice extract represses amyloid beta peptide-induced neurotoxicity via potent synergism of anti-inflammatory and antioxidative effect

Chun-Lin Lee; Jyh-Jye Wang; Tzu-Ming Pan

Amyloid β-peptide (Aβ), a risk of Alzheimers disease (AD), causes cell death by inflammation and oxidative stress. Red mold rice (RMR) fermented by Monascus species is regarded as cholesterol-lowering functional food in virtue of the metabolite monacolin K identified as lovastatin. In addition, RMR is also demonstrated to express antioxidation because of multiple antioxidants. Therefore, this study focuses on the synergism of RMR against Aβ neurotoxicity and compares the effect between lovastatin and RMR including monacolin K and other functional metabolites. In this study, RE 568, an ethanol extract of RMR produced by strain Monascus purpureus NTU 568, is used to protect PC12 cell against Aβ40 neurotoxicity. All tests contain the treatments with lovastatin or RE 568 including equal monacolin K levels in order to compare the effect and investigate whether other metabolites of RE 568 provide potent assistance against Aβ40 neurotoxicity. In the results, monacolin K represses Aβ40 neurotoxicity via repressing small G-protein-mediated inflammation, and other metabolites of RE 568 also exhibit potent antioxidative ability against Aβ-induced oxidative stress. Importantly, stronger effects on repressing the Aβ40-induced cell death, inflammation, and oxidative stress are performed by RE 568 than that by the equal levels of lovastatin, which results from a potent synergism made up of monacolin K, antioxidants, and anti-inflammatory agents. The present study is the first report to demonstrate the potent synergistic protection of RMR against Aβ40 neurotoxicity, which would cause RMR to be developed as potential and novel functional food for the prophylaxis of AD pathogenesis.


Applied Microbiology and Biotechnology | 2006

Effect of red mold rice supplements on serum and meat cholesterol levels of broilers chicken

Jyh-Jye Wang; Tzu-Ming Pan; Meng-Jyh Shieh; Chun-Chen Hsu

Monacolin K is a secondary metabolite produced by Monascus species. It was found that it is able to decrease cholesterol levels. In this study, red mold rice (RMR) was added to the diet of Arbor Acres broiler chickens, and the cholesterol level in meat, as well as the concentration of triglyceride, the high-density lipoprotein cholesterol (HDL-C), and the low-density lipoprotein cholesterol (LDL-C) in the serum were evaluated. Four-week-old broilers are studied and divided into four groups in that each group contains 15 subjects. A 3-week experimental feeding trial was conducted in which three groups of broilers were fed 2.0, 5.0, and 8.0% of RMR (RMR groups) within their diet, respectively, and the result was compared to the control group. The results indicated that for each RMR group, the cholesterol content was significantly lower than that of the control group; in addition, their meat products contain higher level of unsaturated fatty acids. Triglyceride and cholesterol concentration in serum was also found to be considerably lower in RMR groups when compared to control group. Finally, in RMR groups, HDL-C/LDL-C and HDL-C/cholesterol ratios were all higher than those of the control group. In short, the results demonstrated that the cholesterol levels could be lowered by adding RMR to the diet of chickens.


Journal of Agricultural and Food Chemistry | 2011

Enhanced hypolipidemic effect and safety of red mold dioscorea cultured in deep ocean water.

Chun-Lin Lee; Yi-Hsin Kung; Jyh-Jye Wang; Tzu-Ying Lung; Tzu-Ming Pan

Red mold dioscorea (RMD) produced by Monascus sp. was proven to be a hypolipidemic functional food. Deep ocean water (DOW), that is, water obtained from over 200 m deep in the ocean, was found to promote the growth of fungus via its mineral richness. On the basis of the advantages, this study used 650 m DOW as the culture water to culture Monascus purpuresus NTU 568 and produce the DOW-RMD. The goal of this study is to compare the difference between DOW-RMD and reverse osmosis water-cultured RMD (ROW-RMD) on the hypolipidemic effect. Hyperlipidemic hamsters were fed a high-cholesterol diet and administered various doses of DOW-RMD or ROW-RMD for 8 weeks. After sacrifice, biochemical analyses in serum, liver, and feces were carried out. The results showed that DOW-RMD had a greater effect on lowering cholesterol levels and lipid peroxidation in serum and lipid plaque in heart aorta than ROW-RMD. However, DOW was likely to modulate the Monascus metabolite biosynthesis pathway toward the formation of hypolipidemic yellow pigments (such as monascin and ankaflavin) rather than red pigments and the mycotoxin citrinin. In addition, the DOW with higher Mg(2+) ion was proven to absorb into DOW-RMD; however, the accumulation of Mg(2+) ions should contribute a greater hypolipidemic effect to DOW-RMD. Comprehensively, the DOW-induced metabolism modulation and the ions of DOW were a benefit to the development of safe DOW-RMD with low citrinin levels and high hypolipidemic, antiatherosclerosis, and anti-fatty liver effects.


Applied Microbiology and Biotechnology | 2012

In vitro and in vivo comparisons of the effects of the fruiting body and mycelium of Antrodia camphorata against amyloid β-protein-induced neurotoxicity and memory impairment

Li-Chun Wang; Shen-En Wang; Jyh-Jye Wang; Tsung-Yu Tsai; Chun-Hong Lin; Tzu-Ming Pan; Chun-Lin Lee

Antrodia camphorata is a particular and precious medicinal mushroom, and its fruiting body was found to provide more efficient protection from oxidative stress and inflammation than its mycelium because of its higher content of triterpenoids, total phenols, and so on. In the previous in vitro studies, the mycelium of A. camphorata is proven to provide strong neuroprotection in neuron cells and suggested to have the potential of protection against neurotoxicity of amyloid β-protein (Aβ) known as the risk factor toward Alzheimer’s disease (AD) development. However, the in vivo study and the comparison study with the fruiting body have not yet been investigated. This study compared the effect of the fruiting body and mycelium of A. camphorata on alleviating the Aβ40-induced neurocytotoxicity in the in vitro Aβ-damaged neuron cell model (PC-12 cell treated with Aβ40) and memory impairment in the in vivo AD animal model induced with a continuous brain infusion of Aβ40. In the results of in vitro and in vivo studies, the fruiting body possessed stronger anti-oxidative and anti-inflammatory abilities for inhibiting neurocytotoxicity in Aβ40-treated PC-12 cells and Aβ40 accumulation in Aβ40-infused brain than mycelium. Moreover, hyperphosphorylated tau (p-tau) protein expression, known as an important AD risk factor, was suppressed by the treatment of fruiting body rather than that of mycelium in the in vitro and in vivo studies. These comparisons supported the reasons why the fruiting body resulted in a more significant improvement effect on working memory ability than mycelium in the AD rats.


Marine Drugs | 2013

Enhanced Anti-Obesity Activities of Red Mold Dioscorea When Fermented Using Deep Ocean Water as the Culture Water

Li-Chun Wang; Tzu-Ying Lung; Yi-Hsin Kung; Jyh-Jye Wang; Tsung-Yu Tsai; Bai-Luh Wei; Tzu-Ming Pan; Chun-Lin Lee

Deep ocean water (DOW) has, in previous studies, been found to be a novel anti-obesity drink and useful in raising Monascus-produced monascin and ankaflavin levels. This may resolve the limited anti-obesity ability of red mold dioscorea (RMD) known as the Monascus purpureus-fermented Disocorea batatas. This study aims to compare the anti-obesity effect of DOW-cultured RMD (DOW-RMD) and ultra-pure water-cultured RMD (UPW-RMD) in rats fed on a high fat diet. Moreover, the effect of ions composition of DOW and DOW-influenced functional metabolites change of RMD on the differentiation and lipogenesis regulation were investigated using 3T3-L1 pre-adipocytes. In the animal test, compared to UPW-RMD, DOW-RMD possessed better ability to inhibit increases in weight gain, and better feed efficiency, body-fat pad and cross-sectional area of adipocytes. In the cell test, the anti-obesity abilities of DOW-RMD in inhibiting PPARγ and C/EBPα expression in differentiation and lipoprotein lipase activity in lipogenesis were contributed to by the DOW-increased monascin and ankaflavin levels and the ions of DOW, respectively.


Applied Microbiology and Biotechnology | 2013

Monascus- fermented red mold rice exhibits cytotoxic effect and induces apoptosis on human breast cancer cells

Chu-I Lee; Chun-Lin Lee; Jyi-Faa Hwang; Yi-Hsin Lee; Jyh-Jye Wang

Red mold rice (RMR) is a traditional food and folk medicine to Asian people and has recently become a popular health supplement. RMR has been shown to have some anticancer activities, although the mechanism for inducing cell death of human breast cancer cells is still not fully understood. In this study, bioactive extracts of RMR fermented by Monascus purpureus NTU 803 were analyzed for effects on apoptosis induction in human breast cancer cells. The RMR ethanol extract and ethyl acetate extract contain monacolin K, total phenols, and flavonoids, the three components that have been reported to have anticancer activity. Red mold rice extracts (RMRE) exhibited selective cytotoxic effect on MCF-7 cells. RMRE treatment induced apoptosis and cell cycle arrest at G2/M phase. Apoptosis was confirmed by annexin V–fluorescein isothiocyanate (FITC)/propidium iodide staining, the observation of characteristic chromatin condensation, nuclear DNA fragmentation, and poly(ADP-ribose) polymerase cleavage. Furthermore, the RMRE-induced apoptosis in MCF-7 cells may occur through a mitochondria-dependent pathway while triggering an appropriate balance of bax/bcl-2 and activation of caspase-9 and caspase-3 in a time-dependent manner. To conclude, RMRE exhibits direct cytotoxic and proapoptotic effects on MCF-7 cells and could be considered as a potential functional food for breast cancer prevention.


Journal of Agricultural and Food Chemistry | 2008

Safety and mutagenicity evaluation of nanoparticulate red mold rice.

Chiun-Chieh Yu; Jyh-Jye Wang; Chun-Lin Lee; Shu-Hui Lee; Tzu-Ming Pan

Nowadays, people have recognized the importance of Monascus fermented products due to their many health benefits. A previous study demonstrated a novel formulation approach for the preparation of nanoparticulate red mold rice (NRMR). The aim of this study is to determine the useability of stable NRMR dispersion by evaluating its safety and mutagenicity with the Ames test. The crude red mold rice (RMR) was processed using a wet milling technology in the presence of distilled water to form an aqueous-based nanoparticle dispersion with a mean particle size of 259.3 nm. The formulated diepersion was found to be homogeneous and exhibited unimodal particle size distribution when analyzed by dynamic laser scattering techniques. Ames test results indicated that the equivalent of up to 1 mg of ethanol extract of RMR per plate exhibited no genotoxicity toward Salmonella typhimurium strains TA 98, TA 100, and TA 102. In the feeding toxicity test, the no observed adverse effect level (NOAEL) of NRMR was found to be 1000 mg/kg/day for both male and female rats. In conclusion, red mold rice can be formulated as a stable nanoparticulate dispersion using wet milling technology. In vitro and in vivo safety evaluations of NRMR indicated that no mutagenic or toxic responses were observed in this study.


The American Journal of Chinese Medicine | 2016

Effects of Panax notoginseng on the Metastasis of Human Colorectal Cancer Cells

Shu-Ling Hsieh; Shuchen Hsieh; Yu-Hao Kuo; Jyh-Jye Wang; Jinn-Chyi Wang; Chih-Chung Wu

The goal of this study was to investigate the effect of the Panax notoginseng ethanol extract (PNEE) on the regulation of human colorectal cancer (CRC) metastasis. The migratory, invasive, and adhesive abilities and the expression of metastasis-associated regulatory molecules in cultured human CRC cells (HCT-116) treated with the PNEE were analyzed in this study. The migratory and invasive abilities of HCT-116 cells were reduced after PNEE treatment. The incubation of HCT-116 cells with the PNEE for 24 h decreased MMP-9 expression and increased E-cadherin expression compared with the control group. The adhesion reaction assay indicated that treatment with the PNEE led to significantly decreased HCT-116 adhesion to endothelial cells (EA.hy926 cells). The integrin-1 protein levels in HCT-116 cells were significantly decreased following treatment with the PNEE. Similarly, the protein levels of E-selectin and intercellular adhesion molecule-1 (ICAM-1) were significantly decreased by treatment of the EA.hy926 endothelial cells with PNEE. A scanning electron microscope (SEM) examination indicated that HCT-116 cells treated with LPS combined with the PNEE had a less flattened and retracted shape compared with LPS-treated cells, and this change in shape was found to be a phenomenon of extravasation invasion. The transepithelial electrical resistance (TEER) of the EA.hy926 endothelial cell monolayer increased after incubation with the PNEE for 24 h. A cell-cell permeability assay indicated that HCT-116 cells treated with the PNEE displayed significantly reduced levels of phosphorylated VE-cadherin (p-VE-cadherin). These results demonstrate the antimetastatic properties of the PNEE and show that the PNEE affects cells by inhibiting cell migration, invasion, and adhesion and regulating the expression of metastasis-associated signaling molecules.

Collaboration


Dive into the Jyh-Jye Wang's collaboration.

Top Co-Authors

Avatar

Chun-Lin Lee

National Taitung University

View shared research outputs
Top Co-Authors

Avatar

Tzu-Ming Pan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Shu-Ling Hsieh

National Kaohsiung Marine University

View shared research outputs
Top Co-Authors

Avatar

Chih-Chung Wu

Chang Jung Christian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tsung-Yu Tsai

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tzong-Fu Kuo

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge